4.1. Случайная величина (св). Начальные понятия.
1) Случайная величина (СВ )– величина, которая может принимать определённые числовые значения в зависимости от исхода опыта. Обозначается заглавной буквой латинского алфавита. Например, СВ Х= «число сложноподчинённых предложений в тексте определённого объёма».
2) Дискретная случайная величина (ДСВ) может принимать только отделённые друг от друга значения (их конечное или счётное число).
Например, ДСВ Y = «количество глаголов в отрывке текста «Евгений Онегин», длиной 500 словоупотреблений».
3) Непрерывная случайная величина (НСВ) может принимать все значения из некоторого числового промежутка.
Например, HСВ Z= «высота звука человеческой речи»;
V = «интенсивность звука человеческой речи».
4) Случайная лингвистическая величина: длина слова, количество гласных и согласных фонем, число словоупотреблений в предложении и т.д.
Когда фонолог, лексиколог или грамматист исследует структуру планов содержания или выражения, то он всегда имеет дело с дискретными СВ.
Обращаясь к фонетическим или семантическим исследованиям – исследованиям, касающимся субстанции планов выражения и содержания, лингвист должен оперировать непрерывными СВ.
5) Семантическая интерпретация непрерывной СВ 13
Между некоторыми родственными универсальными значениями нет чётких границ, и между ними всегда можно найти бесконечное число переходных смысловых оттенков. Особенно наглядно эта ситуация прослеживается в непрерывности цветового спектра. В каждом языке можно найти средства для обозначения тонких и ещё более тонких оттенков цветов, т.е. семантические интервалы цветового спектра сужаются. Если считать непрерывной СВ некоторое цветовое значение, то окажется, что СВ обязательно примет одно из своих возможных значений при извлечении предложения из соответствующего текста, хотя при многократном повторении опыта это значение будет появляться очень редко.
6) Закон распределения СВ – правило, связывающее значения СВ и соответствующие им вероятности. Для ДСВ закон распределения можно представить в виде таблицы :
Х | … | |||
P | … |
где
7) Многоугольник распределения – ломаная линия, последовательно соединяющая точки с координатами
pi
хi
- Часть1. Тематический план дисциплины
- Часть 2. Конспекты лекций 8
- Часть 3. Вопросы и задания для практических работ. 79
- Часть 4. Задания для самостоятельной работы 92
- Часть 5. Лабораторные работы 97
- Часть1. Тематический план дисциплины «Основы математической обработки информации»
- Часть 2. Конспекты лекций
- 1.1. Исторические периоды развития математики.
- 1.2. Основы теории множеств
- 1.2.1. Начальные понятия теории множеств.
- 2.1.3. Основные понятия комбинаторики
- 2) Перестановка из n элементов – это размещение из n элементов по n.
- 2.2. Начальные понятия теории вероятностей
- 2.2.2. Определения вероятности событий
- 3.1. Действия над событиями
- 3.2. Вероятность суммы событий
- 3.3. Вероятность произведения событий.
- 3.4. Вычисление вероятности цепочек языковых элементов.
- 3.5. Формула полной вероятности. Формула Байеса.
- 1 H2) Формула полной вероятности.
- 3.6. Теорема Бернулли
- 3.7. Вероятностное моделирование порождения текста.
- 3.8. Предельные теоремы в схеме Бернулли
- 4.1. Случайная величина (св). Начальные понятия.
- 4.2. Функция распределения св (интегральная функция распределения) f(X)
- 4.3. Функция плотности вероятности нсв f(X)
- 4.4. Числовые характеристики св
- 4.5. Законы распределения случайных величин.
- 1) Биномиальный закон распределения.
- 2) Закон Пуассона
- 3) Нормальное распределение (закон Гаусса)
- 6. Вероятность попадания нсв х в заданный промежуток
- 7. Логнормальное распределение
- 5.1. Система двух случайных величин (двумерная св) (1 час)
- 5.1.1. Начальные понятия.
- 5.1.2. Операции над независимыми случайными величинами
- 5.1.3. Числовые характеристики системы двух св
- 5.2. Предельные теоремы теории вероятностей: Закон больших чисел, Центральная предельная теорема и их значение для лингвистического эксперимента.(1 час)
- 5.2.1. Теорема Чебышева для среднего арифметического случайных величин.
- 6.1. Предмет математической статистики. Генеральная и выборочная совокупность.
- 6.2. Статистическое распределение выборки и его графическое изображение
- 6.2.1. Дискретный статистический ряд
- 6.2.2. Интервальный статистический ряд
- 6.3. Числовые характеристики статистического распределения
- Лекция 7. Элементы теории статистических оценок и проверки гипотез.
- 7.1 Статистические оценки параметров распределения и их свойства. Оценка параметров генеральной совокупности по выборке
- 7.1.1. Свойства статистических оценок:
- 7.1.2. Точечные оценки математического ожидания, дисперсии и вероятности.
- 7.1.3. Интервальное оценивание параметров.
- 7.1.4. Доверительные интервалы для параметров нормального распределения
- 7.1.5. Число степеней свободы
- 7.1.7. Определение минимально достаточного объёма выборки в грамматических, фонетико-фонологических и лексикологических исследованиях.
- 7.2. Проверка статистических гипотез. Исследование вероятностных свойств языка и статистики текста с помощью метода гипотез.
- 7.2. Проверка статистических гипотез.
- 7.2.1. Статистические гипотезы.
- 7.2.2. Статистический критерий
- 4.2.3. Принцип проверки статистических гипотез
- 7.2.4. Ошибки при проверке гипотез
- 7.2.5. Проверка лингвистических гипотез с помощью параметрических критериев.
- 7.2.6. Проверка гипотез с помощью непараметрических критериев.
- Часть 3. Вопросы и задания для практических работ.
- I. Элементы комбинаторики.
- Часть 4. Задания для самостоятельной работы
- 1. Графический способ.
- 2. Критерий асимметрии и эксцесса.
- 3. Критерий Колмогорова-Смирнова.
- 4. Критерий Пирсона
- Приложение 1. Значения интегральной функции Лапласа
- Приложение 2. Критические значения ( распределение Пирсона)