Свойства отношений.
Определение. Отношение называется рефлексивным, если для любого элемента имеет место .
Главная диагональ матрицы рефлексивного отношения содержит только единицы.
Определение. Отношение называется антирефлексивным, если ни для какого элемента не выполняется .
Главная диагональ матрицы рефлексивного отношения содержит только нули.
Например, отношения “ ” и “иметь общий делитель” являются рефлексивными. Отношения “ ” и “иметь сына” являются антирефлексивными. Отношение “быть симметричным относительно оси абсцисс” не является ни рефлексивным, ни антирефлексивным: точка плоскости симметрична сама себе, если лежит на этой оси, и не симметрична себе, если не лежит на ней.
Определение. Отношение называется симметричным, если для любой пары из отношения следует . Иными словами, отношение является симметричным тогда и только тогда, когда для любой пары оно выполняется в обе стороны (или вовсе не выполняется).
Матрица симметричного отношения симметрична относительно главной диагонали: для любых .
Определение. Отношение называется антисимметричным, если из отношений и следует, что .
Отношение “быть симметричным относительно оси абсцисс” является симметричным: если первая точка симметрична второй относительно этой оси, то и вторая точка симметрична первой. Отношение “ ” является антисимметричным. Действительно, если и , это означает, что .
Нетрудно убедиться в том, что отношение симметрично тогда и только тогда, когда .
Определение. Отношение называется транзитивным, если для любых из отношений и следует .
Отношения “быть равным”, “жить в одном городе”, “быть параллельным” являются транзитивными. Отношения “пересекаться”, “быть сыном” не являются транзитивными.
Замечание. В отличие от отношений рефлексивности и симметричности, для отношения транзитивности не формулируется противоположного понятия (антитранзитивности).
Определение. Транзитивным замыканием отношения называется отношение, определяемое следующим образом: если в множестве существует цепочка из элементов , в которой между каждыми двумя соседними элементами выполняется отношение ( , то говорят, что существует транзитивное замыкание .
Замечание. Замыкание является весьма общим математическим понятием. Упрощённо говоря, замкнутость означает, что многократное повторение допустимых шагов не выводит за определённые границы. Например, множество натуральных чисел замкнуто относительно операции сложения, однако открыто (то есть незамкнуто) относительно операции деления.
Если отношение транзитивно, то, очевидно, (и наоборот). Например, отношение “быть делителем” транзитивно для любой цепочки элементов и само является транзитивным замыканием этого отношения.
Если отношение не транзитивно, то .
Например, транзитивным замыканием отношения “быть сыном” является отношение “быть прямым потомком”, включающее в себя понятия “быть сыном”, “быть внуком”, “быть правнуком” и так далее.
- Конспект лекций по дисциплине “Дискретная математика”
- Санкт Петербург Содержание.
- Раздел I. Множества, функции, отношения. Лекция № 1. Множества и операции над ними.
- 1. Основные понятия теории множеств.
- 2. Операции над множествами и их свойства.
- 3. Векторы и прямые произведения.
- Лекция № 2. Соответствия и функции.
- Соответствия.
- Отображения и функции.
- Лекция № 3. Отношения и их свойства.
- Основные понятия и определения.
- Свойства отношений.
- Лекция № 4. Основные виды отношений.
- Отношения эквивалентности.
- Отношения порядка.
- Лекция № 4. Пересчёт.
- Раздел II. Введение в общую алгебру. Лекция № 6. Элементы общей алгебры.
- 1. Свойства бинарных алгебраических операций.
- 2. Алгебраические структуры.
- Гомоморфизм и изоморфизм.
- Лекция № 7. Различные виды алгебраических структур.
- Полугруппы.
- Группы.
- Поля и кольца.
- Раздел III. Введение в логику. Лекция № 8. Элементы математической логики.
- Булевы функции.
- Лекция № 9. Логические функции.
- Функции алгебры логики.
- Примеры логических функций.
- Суперпозиции и формулы.
- Лекция № 10. Булевы алгебры.
- Разложение функций по переменным. Совершенная дизъюнктивная нормальная форма.
- Булева алгебра функций.
- Эквивалентные преобразования.
- Лекция № 11. Булевы алгебры и теория множеств.
- Двойственность.
- Булева алгебра и теория множеств.
- Днф, интервалы и покрытия.
- Лекция № 12. Полнота и замкнутость.
- Функционально полные системы.
- Алгебра Жегалкина и линейные функции.
- Замкнутые классы. Монотонные функции.
- Теоремы о функциональной полноте.
- Лекция № 13. Язык логики предикатов.
- Предикаты.
- Кванторы.
- Истинные формулы и эквивалентные соотношения.
- Доказательства в логике предикатов.
- Лекция № 14. Комбинаторика.
- Правила суммы и произведения.
- Размещения.
- Перестановки.
- Сочетания. Бином Ньютона.
- Раздел IV. Теория графов. Лекция № 15. Графы: основные понятия и операции.
- Графы, их вершины, рёбра и дуги. Изображение графов.
- Матрица инцидентности и список рёбер. Матрица смежности графа.
- Идентификация графов, заданных своими представлениями.
- Лекция № 16. Маршруты, цепи и циклы.
- Основные определения.
- Связные компоненты графов.
- Расстояния. Диаметр, радиус и центр графа. Протяжённости.
- Эйлеровы графы.
- Лекция № 17. Некоторые классы графов и их частей.
- Деревья.
- Ориентированные графы.
- Графы с помеченными вершинами и рёбрами.
- Лекция № 18. Теория алгоритмов Понятие алгоритма
- 1.2.1. Основные требования к алгоритмам
- 1.2.2. Машина Тьюринга
- Универсальная машина Тьюринга
- 1.2.3. Тезис Тьюринга
- 1.3. Граф машина
- 1.3.1. Модель данных
- 1.3.2. Построение моделей алгоритмов в системе graph
- 2. Сложность алгоритмов
- 2.1.Временная и пространственная сложность алгоритма. Классы dtime и dspace
- 2.2. Классы сложности
- 2.2.1. Полиномиальность и эффективность
- 2.2.2. Алгоритмическая сводимость задач
- 3. Алгоритмы и их сложность
- 3.1. Представление абстрактных объектов (последовательностей)
- 3.1.1. Смежное представление последовательностей
- 3.1.2. Связанное представление последовательностей
- Список вопросов для подготовки к экзамену по дисциплине "дискретная математика"