Ориентированные графы.
Понятие ориентированного графа (орграфа) было определено ранее. Сейчас рассмотрим подробнее, как выглядят в таком графе пути и циклы.
Пусть дан ориентированный граф . Каждое ребро имеет начало и конец ; также говорят, что данное ребро выходит из вершины и входит в вершину .
Дадим определение пути в ориентированном графе. Сразу оговоримся, что это понятие можно определять различными способами; мы приводим только один.
Определение. Путь из вершин и рёбер – это такая последовательность рёбер и вершин графа , в которой вершина является началом го ребра, а вершина его концом. Вершина называется началом пути , вершина его концом, число рёбер длиной пути.
Путь, состоящий из одной вершины, имеет нулевую длину. Каждому пути ненулевой длины взаимно однозначно соответствует последовательность рёбер этого пути. Её называют путём из рёбер. Такое понятие пути – аналог соответствующего понятия для неориентированного графа. Наконец, для графа, не содержащего кратных рёбер, можно указать взаимнооднозначное соответствие с последовательностью вершин пути. В зависимости от ситуации удобнее использовать тот или иной способ обозначения пути.
Определение. Путь называется ориентированным циклом, если состоит более, чем из одного элемента, и его начало совпадает с его концом.
Начало цикла обычно не фиксируется, иначе говоря, все пути, получающиеся друг из друга циклическими сдвигами – это один и тот же цикл. Определение простого ориентированного цикла аналогично соответствующему определению для неориентированного цикла – это цикл, в котором каждая вершина инцидентна ровно двум его рёбрам. Любой граф, содержащий циклы, можно “укоротить” до простого. Граф, не содержащий циклов, называется ациклическим.
Определение. Вершина ориентированного графа называется начальной, если в неё ни входит ни одно ребро и конечной, если из неё не выходит ни одно ребро.
Во всяком ациклическом графе есть хотя бы одна начальная и хотя бы одна конечная вершина. Максимальным рангом вершины ориентированного графа называется максимальная из длин путей этого графа с концом в вершине . Ранг вершины равен нулю тогда и только тогда, когда вершина является начальной. Если же через вершину проходит какой-нибудь цикл, то .
Пусть вершины конечного ориентированного графа пронумерованы от 1 до . Нумерация вершин называется правильной на ребре , если и правильной на графе , если она правильна на всех его рёбрах. Правильная нумерация вершин графа возможна только в том случае, если он ациклический.
Понятия длины путей, протяжённости и расстояния между вершинами определяются для ориентированного графа так же, как для неориентированного графа.
-
Yandex.RTB R-A-252273-3
Содержание
- Конспект лекций по дисциплине “Дискретная математика”
- Санкт Петербург Содержание.
- Раздел I. Множества, функции, отношения. Лекция № 1. Множества и операции над ними.
- 1. Основные понятия теории множеств.
- 2. Операции над множествами и их свойства.
- 3. Векторы и прямые произведения.
- Лекция № 2. Соответствия и функции.
- Соответствия.
- Отображения и функции.
- Лекция № 3. Отношения и их свойства.
- Основные понятия и определения.
- Свойства отношений.
- Лекция № 4. Основные виды отношений.
- Отношения эквивалентности.
- Отношения порядка.
- Лекция № 4. Пересчёт.
- Раздел II. Введение в общую алгебру. Лекция № 6. Элементы общей алгебры.
- 1. Свойства бинарных алгебраических операций.
- 2. Алгебраические структуры.
- Гомоморфизм и изоморфизм.
- Лекция № 7. Различные виды алгебраических структур.
- Полугруппы.
- Группы.
- Поля и кольца.
- Раздел III. Введение в логику. Лекция № 8. Элементы математической логики.
- Булевы функции.
- Лекция № 9. Логические функции.
- Функции алгебры логики.
- Примеры логических функций.
- Суперпозиции и формулы.
- Лекция № 10. Булевы алгебры.
- Разложение функций по переменным. Совершенная дизъюнктивная нормальная форма.
- Булева алгебра функций.
- Эквивалентные преобразования.
- Лекция № 11. Булевы алгебры и теория множеств.
- Двойственность.
- Булева алгебра и теория множеств.
- Днф, интервалы и покрытия.
- Лекция № 12. Полнота и замкнутость.
- Функционально полные системы.
- Алгебра Жегалкина и линейные функции.
- Замкнутые классы. Монотонные функции.
- Теоремы о функциональной полноте.
- Лекция № 13. Язык логики предикатов.
- Предикаты.
- Кванторы.
- Истинные формулы и эквивалентные соотношения.
- Доказательства в логике предикатов.
- Лекция № 14. Комбинаторика.
- Правила суммы и произведения.
- Размещения.
- Перестановки.
- Сочетания. Бином Ньютона.
- Раздел IV. Теория графов. Лекция № 15. Графы: основные понятия и операции.
- Графы, их вершины, рёбра и дуги. Изображение графов.
- Матрица инцидентности и список рёбер. Матрица смежности графа.
- Идентификация графов, заданных своими представлениями.
- Лекция № 16. Маршруты, цепи и циклы.
- Основные определения.
- Связные компоненты графов.
- Расстояния. Диаметр, радиус и центр графа. Протяжённости.
- Эйлеровы графы.
- Лекция № 17. Некоторые классы графов и их частей.
- Деревья.
- Ориентированные графы.
- Графы с помеченными вершинами и рёбрами.
- Лекция № 18. Теория алгоритмов Понятие алгоритма
- 1.2.1. Основные требования к алгоритмам
- 1.2.2. Машина Тьюринга
- Универсальная машина Тьюринга
- 1.2.3. Тезис Тьюринга
- 1.3. Граф машина
- 1.3.1. Модель данных
- 1.3.2. Построение моделей алгоритмов в системе graph
- 2. Сложность алгоритмов
- 2.1.Временная и пространственная сложность алгоритма. Классы dtime и dspace
- 2.2. Классы сложности
- 2.2.1. Полиномиальность и эффективность
- 2.2.2. Алгоритмическая сводимость задач
- 3. Алгоритмы и их сложность
- 3.1. Представление абстрактных объектов (последовательностей)
- 3.1.1. Смежное представление последовательностей
- 3.1.2. Связанное представление последовательностей
- Список вопросов для подготовки к экзамену по дисциплине "дискретная математика"