Матрица инцидентности и список рёбер. Матрица смежности графа.
Обычно рассматриваемые графы конечны, то есть, конечны множества их элементов – вершин и рёбер. Поэтому в дальнейшем конечность графов не будет оговариваться, тем более, что важнейшие понятия и результаты, приводимые ниже относятся к произвольным графам.
Задать граф – значит, описать множества его вершин и рёбер и задать между ними отношение инцидентности. Когда граф конечный, для описания его вершин и рёбер достаточно их занумеровать. Пусть - вершины графа, а - его рёбра. Отношение инцидентности можно определить матрицей размерности . Столбцы этой матрицы будут соответствовать вершинам графа, а строки – его рёбрам. Если ребро инцидентно вершине , то , в противном случае - . Такая матрица называется матрицей инцидентности неориентированного графа, поскольку по способу её задания невозможно различить начало и конец каждого ребра.
Пример 1. Составить матрицу инцидентности неориентированного графа, изображённого на рисунке 3.
Рисунок 3.
Строим матрицу инцидентности в виде таблицы:
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
a | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
b | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
c | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
d | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
e | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
f | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
g | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
h | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
i | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
j | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Для ориентированного графа матрица инцидентности составляется иначе. Это матрица размерности .
Если вершина - начало ребра , то . Если вершина - конец ребра , то . Если вершине инцидентна петля , то , где любое число, кроме чисел (обычно берут 2). В любом противном случае - .
Пример 2. Построить матрицу инцидентности для графа, изображённого на рисунке 4.
Строим матрицу инцидентности в виде таблицы:
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
a | -1 | 1 | 0 | 0 | 0 | 0 | 0 |
b | -1 | 0 | 1 | 0 | 0 | 0 | 0 |
c | 0 | -1 | 0 | 1 | 0 | 0 | 0 |
d | 0 | 0 | -1 | 0 | 1 | 0 | 0 |
e | 0 | 0 | -1 | 0 | 0 | 1 | 0 |
f | 0 | 0 | -1 | 0 | 0 | 0 | 1 |
g | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
Ещё проще задавать граф с помощью таблицы рёбер. Она состоит из двух столбцов; в левых содержатся названия рёбер, а в правых – инцидентные им вершины (для ориентированных графов обязательно сначала указывается начало ребра, потом конец). Ниже приведены таблицы рёбер для графов из примеров 1 и 2.
Для примера 1:
Рёбра | Вершины |
a | 1, 2 |
b | 1, 3 |
c | 2, 4 |
d | 1, 5 |
e | 2, 6 |
f | 3, 4 |
g | 3, 5 |
g | 4, 6 |
i | 5, 7 |
j | 6, 8 |
Для примера 2:
Рёбра | Вершины |
a | 1, 2 |
b | 1, 3 |
c | 2, 4 |
d | 3, 5 |
e | 3, 6 |
f | 3, 7 |
g | 7, 7 |
Очевидно, по списку рёбер можно построить его таблицу инцидентности. Действительно, каждая строка этого списка соответствует строке матрицы с тем же номером; аналогично можно выполнить обратную процедуру.
Ещё одним способом представления графа является построение для него матрицы смежности. Это квадратная матрица , в которой количество строк и столбцов равно количеству вершин графа. Для неориентированного графа эта матрица определяется следующим образом. Если вершины и являются смежными, то есть если выполняется , то . В противном случае, . Для графа из примера 1 таблица смежности имеет вид:
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
2 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
3 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
4 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
6 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
7 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
Матрица смежности неориентированного графа обязательно симметрична. Размерность матрицы указывает на количество вершин, а число рёбер равно половине единиц, имеющихся в матрице.
Матрица смежности ориентированного графа отличается только тем, что в том и только в том случае, когда в паре смежных вершин и вершина является началом, а вершина - концом ребра. Для графа из примера 2 матрица смежности выглядит следующим образом:
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Очевидно, что вся информация об ориентированном графе, порождающем некоторую матрицу смежности, содержится в верхнем (относительно главной диагонали) её треугольнике.
Ориентированный граф с симметричной матрицей смежности канонически соответствует неориентированному графу, имеющему ту же таблицу смежности (но не наоборот).
- Конспект лекций по дисциплине “Дискретная математика”
- Санкт Петербург Содержание.
- Раздел I. Множества, функции, отношения. Лекция № 1. Множества и операции над ними.
- 1. Основные понятия теории множеств.
- 2. Операции над множествами и их свойства.
- 3. Векторы и прямые произведения.
- Лекция № 2. Соответствия и функции.
- Соответствия.
- Отображения и функции.
- Лекция № 3. Отношения и их свойства.
- Основные понятия и определения.
- Свойства отношений.
- Лекция № 4. Основные виды отношений.
- Отношения эквивалентности.
- Отношения порядка.
- Лекция № 4. Пересчёт.
- Раздел II. Введение в общую алгебру. Лекция № 6. Элементы общей алгебры.
- 1. Свойства бинарных алгебраических операций.
- 2. Алгебраические структуры.
- Гомоморфизм и изоморфизм.
- Лекция № 7. Различные виды алгебраических структур.
- Полугруппы.
- Группы.
- Поля и кольца.
- Раздел III. Введение в логику. Лекция № 8. Элементы математической логики.
- Булевы функции.
- Лекция № 9. Логические функции.
- Функции алгебры логики.
- Примеры логических функций.
- Суперпозиции и формулы.
- Лекция № 10. Булевы алгебры.
- Разложение функций по переменным. Совершенная дизъюнктивная нормальная форма.
- Булева алгебра функций.
- Эквивалентные преобразования.
- Лекция № 11. Булевы алгебры и теория множеств.
- Двойственность.
- Булева алгебра и теория множеств.
- Днф, интервалы и покрытия.
- Лекция № 12. Полнота и замкнутость.
- Функционально полные системы.
- Алгебра Жегалкина и линейные функции.
- Замкнутые классы. Монотонные функции.
- Теоремы о функциональной полноте.
- Лекция № 13. Язык логики предикатов.
- Предикаты.
- Кванторы.
- Истинные формулы и эквивалентные соотношения.
- Доказательства в логике предикатов.
- Лекция № 14. Комбинаторика.
- Правила суммы и произведения.
- Размещения.
- Перестановки.
- Сочетания. Бином Ньютона.
- Раздел IV. Теория графов. Лекция № 15. Графы: основные понятия и операции.
- Графы, их вершины, рёбра и дуги. Изображение графов.
- Матрица инцидентности и список рёбер. Матрица смежности графа.
- Идентификация графов, заданных своими представлениями.
- Лекция № 16. Маршруты, цепи и циклы.
- Основные определения.
- Связные компоненты графов.
- Расстояния. Диаметр, радиус и центр графа. Протяжённости.
- Эйлеровы графы.
- Лекция № 17. Некоторые классы графов и их частей.
- Деревья.
- Ориентированные графы.
- Графы с помеченными вершинами и рёбрами.
- Лекция № 18. Теория алгоритмов Понятие алгоритма
- 1.2.1. Основные требования к алгоритмам
- 1.2.2. Машина Тьюринга
- Универсальная машина Тьюринга
- 1.2.3. Тезис Тьюринга
- 1.3. Граф машина
- 1.3.1. Модель данных
- 1.3.2. Построение моделей алгоритмов в системе graph
- 2. Сложность алгоритмов
- 2.1.Временная и пространственная сложность алгоритма. Классы dtime и dspace
- 2.2. Классы сложности
- 2.2.1. Полиномиальность и эффективность
- 2.2.2. Алгоритмическая сводимость задач
- 3. Алгоритмы и их сложность
- 3.1. Представление абстрактных объектов (последовательностей)
- 3.1.1. Смежное представление последовательностей
- 3.1.2. Связанное представление последовательностей
- Список вопросов для подготовки к экзамену по дисциплине "дискретная математика"