Булева алгебра и теория множеств.
Ранее были описаны булевы алгебры множеств, то есть алгебры вида , где - булеан множества , то есть множество всех его подмножеств. Общий термин “булева алгебра” для алгебр множеств и логических функций не является случайным.
Определение. Всякая алгебра типа называется булевой алгеброй, если её операции удовлетворяют соотношениям 1 – 10 (см. предыдущую лекцию).
В алгебре множеств элементами являются подмножества фиксированного универсального множества . В этой алгебре операция пересечения соответствует конъюнкции, операция объединения соответствует дизъюнкции, а операция дополнения соответствует отрицанию. Само множество является единицей, а пустое множество – нулём. Справедливость соотношений 1 – 10 для этой алгебры можно доказать непосредственно, рассматривая в них переменные как множества, а знаки логических функций – как соответствующие операции над множествами.
В одной из предыдущих лекций отмечалось взаимно однозначное соответствие между множеством , где и множеством двоичных векторов длины . Каждому подмножеству соответствует двоичный вектор , где , если , и , если . Операции над векторами в булевой алгебре определяются следующим образом.
Пусть даны два вектора и из множества . Тогда:
,
,
.
Поскольку компоненты (координаты) векторов принимают значения 0 или 1, то указанные операции – это просто логические операции над двоичными переменными, поэтому операции над векторами естественно назвать покомпонентными логическими операциями над двоичными векторами.
Пример 2. Даны векторы и . Найти .
Решение:
.
Заметим, что подобные операции (наряду с логическими операциями над переменными) входят в систему команд любой современной ЭВМ.
Теорема 10.2. Если мощность множества равна , то булева алгебра изоморфна булевой алгебре .
Эта простая по содержанию теорема имеет огромное значение в математике. Она позволяет заменить теоретико-множественные операции над системой подмножеств данного множества поразрядными логическими операциями над двоичными векторами.
Похожая по формулировке, но значительно отличающаяся по смыслу теорема существует для множества всех логических функций переменных . Обозначим это множество . Оно замкнуто относительно операций и, следовательно, образует конечную булеву алгебру , которая является подалгеброй булевой алгебры логических функций.
Теорема 10.3. Если мощность множества равна , то булева алгебра изоморфна булевой алгебре функций .
Теорема 10.3 указывает на тесную связь между множествами и логическими функциями и позволяет переходить от операций над множествами к операциям над функциями и обратно. В частности, они позволяют непосредственно производить операции над функциями, заданными не формулами, а таблицами. Пример приведён в следующей таблице, содержащей две функции трёх переменных и и результаты операций над ними:
|
|
|
|
|
|
|
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
Yandex.RTB R-A-252273-3
- Конспект лекций по дисциплине “Дискретная математика”
- Санкт Петербург Содержание.
- Раздел I. Множества, функции, отношения. Лекция № 1. Множества и операции над ними.
- 1. Основные понятия теории множеств.
- 2. Операции над множествами и их свойства.
- 3. Векторы и прямые произведения.
- Лекция № 2. Соответствия и функции.
- Соответствия.
- Отображения и функции.
- Лекция № 3. Отношения и их свойства.
- Основные понятия и определения.
- Свойства отношений.
- Лекция № 4. Основные виды отношений.
- Отношения эквивалентности.
- Отношения порядка.
- Лекция № 4. Пересчёт.
- Раздел II. Введение в общую алгебру. Лекция № 6. Элементы общей алгебры.
- 1. Свойства бинарных алгебраических операций.
- 2. Алгебраические структуры.
- Гомоморфизм и изоморфизм.
- Лекция № 7. Различные виды алгебраических структур.
- Полугруппы.
- Группы.
- Поля и кольца.
- Раздел III. Введение в логику. Лекция № 8. Элементы математической логики.
- Булевы функции.
- Лекция № 9. Логические функции.
- Функции алгебры логики.
- Примеры логических функций.
- Суперпозиции и формулы.
- Лекция № 10. Булевы алгебры.
- Разложение функций по переменным. Совершенная дизъюнктивная нормальная форма.
- Булева алгебра функций.
- Эквивалентные преобразования.
- Лекция № 11. Булевы алгебры и теория множеств.
- Двойственность.
- Булева алгебра и теория множеств.
- Днф, интервалы и покрытия.
- Лекция № 12. Полнота и замкнутость.
- Функционально полные системы.
- Алгебра Жегалкина и линейные функции.
- Замкнутые классы. Монотонные функции.
- Теоремы о функциональной полноте.
- Лекция № 13. Язык логики предикатов.
- Предикаты.
- Кванторы.
- Истинные формулы и эквивалентные соотношения.
- Доказательства в логике предикатов.
- Лекция № 14. Комбинаторика.
- Правила суммы и произведения.
- Размещения.
- Перестановки.
- Сочетания. Бином Ньютона.
- Раздел IV. Теория графов. Лекция № 15. Графы: основные понятия и операции.
- Графы, их вершины, рёбра и дуги. Изображение графов.
- Матрица инцидентности и список рёбер. Матрица смежности графа.
- Идентификация графов, заданных своими представлениями.
- Лекция № 16. Маршруты, цепи и циклы.
- Основные определения.
- Связные компоненты графов.
- Расстояния. Диаметр, радиус и центр графа. Протяжённости.
- Эйлеровы графы.
- Лекция № 17. Некоторые классы графов и их частей.
- Деревья.
- Ориентированные графы.
- Графы с помеченными вершинами и рёбрами.
- Лекция № 18. Теория алгоритмов Понятие алгоритма
- 1.2.1. Основные требования к алгоритмам
- 1.2.2. Машина Тьюринга
- Универсальная машина Тьюринга
- 1.2.3. Тезис Тьюринга
- 1.3. Граф машина
- 1.3.1. Модель данных
- 1.3.2. Построение моделей алгоритмов в системе graph
- 2. Сложность алгоритмов
- 2.1.Временная и пространственная сложность алгоритма. Классы dtime и dspace
- 2.2. Классы сложности
- 2.2.1. Полиномиальность и эффективность
- 2.2.2. Алгоритмическая сводимость задач
- 3. Алгоритмы и их сложность
- 3.1. Представление абстрактных объектов (последовательностей)
- 3.1.1. Смежное представление последовательностей
- 3.1.2. Связанное представление последовательностей
- Список вопросов для подготовки к экзамену по дисциплине "дискретная математика"