logo
Конспект лекций Дискретная математика

Размещения.

Определение. Любой вектор длины , составленный из элементов элементного множества , в котором все элементы различны, называется размещением без повторений по элементов из . Число всех размещений без повторений по элементов из обозначается и равно .

Пример 2. Куплено различных 12 книг. На полке можно поставить в ряд ровно 6 книг. Сколькими различными способами можно это сделать?

Будем считать различными не только те случаи, когда берутся разные книги, но и когда они по-разному расставлены на полке (в различном порядке). Тогда речь идёт о перестановках по 6 из 12. Получаем: .

Рассмотрим существенно другой случай, а именно когда элементы множества в векторах могут повторяться.

Определение. Любой вектор длины , составленный из элементов элементного множества , состоящего из элементов, в котором все элементы различны, называется размещением с повторениями по элементов из . Число всех размещений с повторениями по элементов из обозначается и равно .

Пример 3. Сколько различных комбинаций может получиться при одновременном бросании трёх игральных костей?

Каждая игральная кость представляет собой кубик, на гранях которого нанесено от одного до 6 очков. При каждом бросании мы будем получать наборы вида , где - количество очков, выпавших на соответствующей кости. Речь идёт о перестановках с повторениями по 3 элемента из 6. Получаем: .

Замечание. Очевидно, что размещения без повторений являются частным случаем размещений с повторениями.

  1. Yandex.RTB R-A-252273-3
    Yandex.RTB R-A-252273-4