logo
Конспект лекций Дискретная математика

Гомоморфизм и изоморфизм.

Алгебры с различными типами (в смысле, определённом в пункте 1), очевидно, имеют существенно различное строение. Если же алгебры имеют одинаковый тип, то наличие у них сходства характеризуется вводимых ниже понятий.

Определение. Пусть даны две алгебры и . Гомоморфизмом алгебры в алгебру называется функция , такая, что для всех выполняется условие:

для любого . (*)

Смысл данного определения состоит в следующем. Независимо от того, выполнена ли сначала операция в алгебре , а потом произведено отображение , либо сначала произведено отображение , а потом в алгебре выполнена соответствующая операция , результат будет одинаков.

Сейчас мы определим некоторые виды гомоморфизма, обладающие дополнительными свойствами.

Определение. Гомоморфизм, который является инъекцией, называется мономорфизмом.

Определение. Гомоморфизм, который является сюръекцией, называется эпиморфизмом.

Определение. Гомоморфизм, который является биекцией, называется изоморфизмом.

Таким образом, можно сказать, что изоморфизм – это взаимно однозначный гомоморфизм.

Замечание. Если множества-носители двух данных алгебр равны, то их гомоморфизм называется эндоморфизмом, а изоморфизм – автоморфизмом.

Теорема 5.2. Если и - две алгебры одного типа и - изоморфизм, то - тоже изоморфизм.

Пример 2.

а) Пусть - множество натуральных чисел, множество натуральных чётных чисел. Алгебры и изоморфны; изоморфизмом является отображение , причём условие здесь имеет вид . Поскольку , то данный изоморфизм есть изоморфизм алгебры в себя.

б) Изоморфизмом между алгебрами и является, например, отображение . Условие имеет вид .

в) Булевы алгебры, образованные двумя различными множествами одинаковой мощности, изоморфны: операции у них просто одинаковы (см. выше), а отображением может служить любое взаимнооднозначное соответствие.

Теорема 5.3. Отношение изоморфизма является отношением эквивалентности на множестве алгебр.

Понятие изоморфизма является одним из важнейших понятий в математике. Его сущность можно выразить следующим образом. Если две алгебры изоморфны, то элементы и операции любой из них можно переименовать таким образом, что эти алгебры совпадут. Это позволяет, получив некоторое эквивалентное соотношение в данной алгебре, распространять его на любую изоморфную ей алгебру. Распространённое в математике выражение “с точностью до изоморфизма” означает, что рассматриваются только те свойства объектов, которые сохраняются при изоморфизме, то есть являются общими для всех изоморфных объектов. В частности, изоморфизм сохраняет коммутативность, ассоциативность и дистрибутивность.