Графы, их вершины, рёбра и дуги. Изображение графов.
Определение. Если на плоскости задать конечное множество V точек и конечный набор линий E, соединяющих некоторые пары из точек V, то полученная совокупность точек и линий будет называться графом G = (V, E).
При этом элементы множества V называются вершинами графа, а элементы множества E – ребрами.
Определение. Если вершина v является концом ребра , то говорят, что v и инцидентны.
В множестве V могут встречаться одинаковые элементы, ребра, соединяющие одинаковые элементы называются петлями (на рисунке 1.4 при вершине 5 имеется петля). Одинаковые пары в множестве E называются кратными (или параллельными) ребрами. Количество одинаковых пар (v, w) в E называется кратностью ребра (v, w). Например, на рисунке 1.1 все рёбра имеют кратность 1, а на рисунке 1.2 есть два ребра, соединяющих одни и те же вершины 1 и 4, следовательно, их кратность равна двум.
Множество V и набор E определяют граф с кратными ребрами – псевдограф.
Псевдограф без петель называется мультиграфом.
Если в наборе E ни одна пара не встречается более одного раза, то мультиграф называется графом.
Ниже, на рисунке 1.1 изображен граф, на рисунке 1.2 мультиграф, на рисунке 1.4 – псевдограф.
Графу соответствует геометрическая конфигурация. Вершины обозначаются точками (кружочками), а ребра – линиями, соединяющими соответствующие вершины. На рисунке 1 изображены некоторые неориентированные графы.
Рисунок 1.
1.1 1.2 1.3
1.4 1.5
Замечание 1. Слово “линия”, которое мы используем, подразумевает несущественность того, какая конкретно линия используется для соединения двух вершин графа, то есть её геометрические характеристики не имеют значения.
Замечание 2. Граф можно определить, также как совокупность двух множеств и , между элементами которых установлено отношение инцидентности, при котором каждый элемент инцидентен ровно двум элементам .
Определение. Если х = {v, w} – ребро графа, то вершины v, w называются концами ребра х.
Определение. Если пары в наборе E являются упорядоченными, то граф называется ориентированным или орграфом.
Если пишут = (v, w) – дуга орграфа, то вершина v – начало, а вершина w – конец дуги х.
Определение. Вершины v, w графа G = (V, E) называются смежными, если {v,w}Е. Два ребра называются смежными, если они имеют общую вершину.
Определение. Степенью вершины графа называется число ребер, которым эта вершина принадлежит. Вершина называется висячей, если ее степень равна единице и изолированной, если ее степень равна нулю.
На рисунке 1.5 все вершины, кроме вершины 1, являются висячими. На рисунке 1.3 вершина 4 является изолированной. Если граф состоит только из таких вершин, его называют пустым. В некоторых случаях пустым называют граф, не имеющей ни одной вершины.
Рисунок 2.
2.1 2.2 2.3
2.5
На рисунке 2 представлены различные типы ориентированных графов.
Заметим, что каждому неориентированному графу можно поставить в соответствие ориентированный граф с тем же множеством вершин, в котором каждое ребро заменено двумя противоположными рёбрами, инцидентными тем же вершинам. Такое соответствие называется каноническим.
Yandex.RTB R-A-252273-3
- Конспект лекций по дисциплине “Дискретная математика”
- Санкт Петербург Содержание.
- Раздел I. Множества, функции, отношения. Лекция № 1. Множества и операции над ними.
- 1. Основные понятия теории множеств.
- 2. Операции над множествами и их свойства.
- 3. Векторы и прямые произведения.
- Лекция № 2. Соответствия и функции.
- Соответствия.
- Отображения и функции.
- Лекция № 3. Отношения и их свойства.
- Основные понятия и определения.
- Свойства отношений.
- Лекция № 4. Основные виды отношений.
- Отношения эквивалентности.
- Отношения порядка.
- Лекция № 4. Пересчёт.
- Раздел II. Введение в общую алгебру. Лекция № 6. Элементы общей алгебры.
- 1. Свойства бинарных алгебраических операций.
- 2. Алгебраические структуры.
- Гомоморфизм и изоморфизм.
- Лекция № 7. Различные виды алгебраических структур.
- Полугруппы.
- Группы.
- Поля и кольца.
- Раздел III. Введение в логику. Лекция № 8. Элементы математической логики.
- Булевы функции.
- Лекция № 9. Логические функции.
- Функции алгебры логики.
- Примеры логических функций.
- Суперпозиции и формулы.
- Лекция № 10. Булевы алгебры.
- Разложение функций по переменным. Совершенная дизъюнктивная нормальная форма.
- Булева алгебра функций.
- Эквивалентные преобразования.
- Лекция № 11. Булевы алгебры и теория множеств.
- Двойственность.
- Булева алгебра и теория множеств.
- Днф, интервалы и покрытия.
- Лекция № 12. Полнота и замкнутость.
- Функционально полные системы.
- Алгебра Жегалкина и линейные функции.
- Замкнутые классы. Монотонные функции.
- Теоремы о функциональной полноте.
- Лекция № 13. Язык логики предикатов.
- Предикаты.
- Кванторы.
- Истинные формулы и эквивалентные соотношения.
- Доказательства в логике предикатов.
- Лекция № 14. Комбинаторика.
- Правила суммы и произведения.
- Размещения.
- Перестановки.
- Сочетания. Бином Ньютона.
- Раздел IV. Теория графов. Лекция № 15. Графы: основные понятия и операции.
- Графы, их вершины, рёбра и дуги. Изображение графов.
- Матрица инцидентности и список рёбер. Матрица смежности графа.
- Идентификация графов, заданных своими представлениями.
- Лекция № 16. Маршруты, цепи и циклы.
- Основные определения.
- Связные компоненты графов.
- Расстояния. Диаметр, радиус и центр графа. Протяжённости.
- Эйлеровы графы.
- Лекция № 17. Некоторые классы графов и их частей.
- Деревья.
- Ориентированные графы.
- Графы с помеченными вершинами и рёбрами.
- Лекция № 18. Теория алгоритмов Понятие алгоритма
- 1.2.1. Основные требования к алгоритмам
- 1.2.2. Машина Тьюринга
- Универсальная машина Тьюринга
- 1.2.3. Тезис Тьюринга
- 1.3. Граф машина
- 1.3.1. Модель данных
- 1.3.2. Построение моделей алгоритмов в системе graph
- 2. Сложность алгоритмов
- 2.1.Временная и пространственная сложность алгоритма. Классы dtime и dspace
- 2.2. Классы сложности
- 2.2.1. Полиномиальность и эффективность
- 2.2.2. Алгоритмическая сводимость задач
- 3. Алгоритмы и их сложность
- 3.1. Представление абстрактных объектов (последовательностей)
- 3.1.1. Смежное представление последовательностей
- 3.1.2. Связанное представление последовательностей
- Список вопросов для подготовки к экзамену по дисциплине "дискретная математика"