1.2.2. Машина Тьюринга
При написании этого раздела использовались материалы курсы лекций [1].
Неформально, машина Тьюринга (далее МТ) представляет собой автомат с конечным числом состояний и неограниченной памятью, представленной бесконечной лентой (в общем случае набором лент). Лента поделена на бесконечное число ячеек, и на ней выделена стартовая ячейка.
В каждой ячейке ленты может быть записан только один символ из некоторого конечного алфавита , где предусмотрен символ для обозначения пустой ячейки.
На ленте имеется головка чтения-записи, и она подсоединены к «управляющему модулю» МТ — автомату с конечным множеством состояний .
Имеется выделенное стартовое состояние и состояние завершения .
Перед запуском МТ находится в состоянии , а головка позиционируется на нулевой ячейке ленты.
На каждом шаге головка считывает информацию из текущей ячейки и посылают ее управляющему модулю МТ. В зависимости от этих символов и собственного состояния, управляющий модуль производит следующие операции:
посылает головке символ для записи в текущую ячейку каждой ленты;
посылает головке одну из команд «LEFT», «RIGHT», «STAY»;
выполняет переход в новое состояние (которое, впрочем, может совпадать с предыдущим).
На рисунке 1 представлена схема машины Тьюринга.
Определение 4. Машина Тьюринга — это набор
- алфавит, - пустой символ;
- конечное множество состояний, , - выделенные состояния : запуск машины и завершения работы;
- произвольные отображения:
- задает новое состояние,
-символ для записи на ленте,
- определяет перемещение головки.
Таким образом, машина Тьюринга задается таблицей команд размером , задающей правила работы машины в соответствии с функциями . Если к словарю А добавить пустой символ , то получим расширенный словарь .
Под входом для МТ подразумевается слово состоящее из символов словаря , записанного справа от стартовой позиции на ленте МТ. Договоримся, что входное слово не содержит пустых символов - иначе возникнут технические сложности, как определить, где кончается входное слово и т.п.
Результатом работы МТ над некотором входном слове X считается слово, записанное на ленте после остановки МТ.
Таким образом память МТ – конечное множество состояний (внутренняя память) и лента (внешняя память).
Данные МТ – слова в алфавите машины. Через обозначим исходное слово.
Элементарные шаги машины – считывание и запись символов, сдвиг головки на ячейку вправо, влево, на месте, а также переход управляющего устройства в следующее состояние.
«Программа управления» МТ это задание записанное системой правил (команд) вида:
( - направление сдвига головки )
«Программу управления» можно задать таблицей, строки которой соответствуют состояниям МТ, столбцам – входные символы, а на пересечении строки и столбца записана тройка символов .
Альтернативным способом описания «программы управления» является диаграмма переходов, представленная в виде ориентированного графа, вершинами которого являются состояния , дуги помечены переходами вида .
Полное состояние МТ, по которому однозначно можно определить ее дальнейшее поведение, определяется ее внутренним состоянием, состоянием ленты и положением головки.
Пример 1. Сложение. Рассмотрим задачу сложения 2 натуральных чисел. Договоримся представлять натуральные числа в единичном (унарном) коде , например, для числа х справедливо: . Положим, что для всех числовых функций либо .
Тогда числовая функция правильно вычислима по Тьюрингу, если существует машина Т такая, что , когда и Т работает бесконечно, начиная с , когда не вычислима.
Рассмотрим сложение 2 чисел a и b ( ) это слово необходимо переработать в , т.е. удалить разделитель и сдвинуть одно из слагаемых, скажем первое, к другому.
Это преобразование осуществляет машина с 4 состояниями и следующей системой команд:
В табличной форме программа управления выглядит так
-
1
*
Диаграмма переходов описывается графом, представленном на рисунке 2.
Рис. 2. Диаграмма переходов операции сложения МТ
Yandex.RTB R-A-252273-3
- Конспект лекций по дисциплине “Дискретная математика”
- Санкт Петербург Содержание.
- Раздел I. Множества, функции, отношения. Лекция № 1. Множества и операции над ними.
- 1. Основные понятия теории множеств.
- 2. Операции над множествами и их свойства.
- 3. Векторы и прямые произведения.
- Лекция № 2. Соответствия и функции.
- Соответствия.
- Отображения и функции.
- Лекция № 3. Отношения и их свойства.
- Основные понятия и определения.
- Свойства отношений.
- Лекция № 4. Основные виды отношений.
- Отношения эквивалентности.
- Отношения порядка.
- Лекция № 4. Пересчёт.
- Раздел II. Введение в общую алгебру. Лекция № 6. Элементы общей алгебры.
- 1. Свойства бинарных алгебраических операций.
- 2. Алгебраические структуры.
- Гомоморфизм и изоморфизм.
- Лекция № 7. Различные виды алгебраических структур.
- Полугруппы.
- Группы.
- Поля и кольца.
- Раздел III. Введение в логику. Лекция № 8. Элементы математической логики.
- Булевы функции.
- Лекция № 9. Логические функции.
- Функции алгебры логики.
- Примеры логических функций.
- Суперпозиции и формулы.
- Лекция № 10. Булевы алгебры.
- Разложение функций по переменным. Совершенная дизъюнктивная нормальная форма.
- Булева алгебра функций.
- Эквивалентные преобразования.
- Лекция № 11. Булевы алгебры и теория множеств.
- Двойственность.
- Булева алгебра и теория множеств.
- Днф, интервалы и покрытия.
- Лекция № 12. Полнота и замкнутость.
- Функционально полные системы.
- Алгебра Жегалкина и линейные функции.
- Замкнутые классы. Монотонные функции.
- Теоремы о функциональной полноте.
- Лекция № 13. Язык логики предикатов.
- Предикаты.
- Кванторы.
- Истинные формулы и эквивалентные соотношения.
- Доказательства в логике предикатов.
- Лекция № 14. Комбинаторика.
- Правила суммы и произведения.
- Размещения.
- Перестановки.
- Сочетания. Бином Ньютона.
- Раздел IV. Теория графов. Лекция № 15. Графы: основные понятия и операции.
- Графы, их вершины, рёбра и дуги. Изображение графов.
- Матрица инцидентности и список рёбер. Матрица смежности графа.
- Идентификация графов, заданных своими представлениями.
- Лекция № 16. Маршруты, цепи и циклы.
- Основные определения.
- Связные компоненты графов.
- Расстояния. Диаметр, радиус и центр графа. Протяжённости.
- Эйлеровы графы.
- Лекция № 17. Некоторые классы графов и их частей.
- Деревья.
- Ориентированные графы.
- Графы с помеченными вершинами и рёбрами.
- Лекция № 18. Теория алгоритмов Понятие алгоритма
- 1.2.1. Основные требования к алгоритмам
- 1.2.2. Машина Тьюринга
- Универсальная машина Тьюринга
- 1.2.3. Тезис Тьюринга
- 1.3. Граф машина
- 1.3.1. Модель данных
- 1.3.2. Построение моделей алгоритмов в системе graph
- 2. Сложность алгоритмов
- 2.1.Временная и пространственная сложность алгоритма. Классы dtime и dspace
- 2.2. Классы сложности
- 2.2.1. Полиномиальность и эффективность
- 2.2.2. Алгоритмическая сводимость задач
- 3. Алгоритмы и их сложность
- 3.1. Представление абстрактных объектов (последовательностей)
- 3.1.1. Смежное представление последовательностей
- 3.1.2. Связанное представление последовательностей
- Список вопросов для подготовки к экзамену по дисциплине "дискретная математика"