logo search
EMM_1_26

22.Суть та наслідки автокореляції стохастичної складової.

Автокореляція - це наявність взаємозв’язку між послідовними елементами часового чи просторового ряду даних. В економетричних дослідженнях часто виникають такі ситуації, коли дисперсія залишків є сталою, але спостерігається їх коваріація. Це явище називають автокореляцією залишків. Автокореляція залишків найчастіше спостерігається тоді, коли економетрична модель будується на основі часових рядів. Якщо існує кореляція між послідовними значеннями деякої пояснювальної змінної, то буде спостерігатись і кореляція послідовних значень залишків. Автокореляція може бути також наслідком помилкової специфікації економетричної моделі, зокрема наявність автокореляції залишків може означати, що необхідно ввести до моделі нову незалежну змінну. Знехтувавши автокореляцією залишків і оцінивши параметри моделі 1МНК, дійдемо таких трьох основних наслідків. 1. Оцінки параметрів моделі можуть бути незміщеними, але неефективними, тобто вибіркові дисперсії вектора оцінок можуть бути невиправдано великими. 2. Оскільки вибіркові дисперсії обчислюються не за уточненими формулами, то статистичні критерії t- і F-статистики, які знайдено для лінійної моделі, практично не можуть бути викорис­тані в дисперсійному аналізі при автокореляції.

3. Неефективність оцінок параметрів економетричної моделі призводить, як правило, до неефективних прогнозів, тобто прогнозів з доволі великою вибірковою дисперсією.