31.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
Допустимий план Х = (х1, х2, …, хn) називається опорним планом задачі лінійного програмування, якщо він задовольняє не менше, ніж m лінійно незалежних обмежень системи (3.2) у вигляді рівностей, а також обмеження (3.3) щодо невід’ємності змінних. Опорний план Х = (х1, х2, …, хn), називається невиродженим, якщо він містить точно m додатних змінних, інакше він вироджений. Опорний план , за якого цільова функція (3.1) досягає масимального (чи мінімального) значення, називаєтьсяоптимальним розв’язком (планом) задачі лінійного програмування.Кожна нерівність цієї системи геометрично визначає півплощину з граничною прямою ai1x1 + ai2x2 = bi (i = 1, 2, ...,т). Умови невід’ємності змінних визначають півплощини з граничними прямими х1 = 0 та х2 = 0. Система сумісна, тому півплощини як опуклі множини, перетинаючись, утворюють спільну частину, що є опуклою множиною і являє собою сукупність точок, координати кожної з яких є розв’язком даної системи. Сукупність цих точок (розв’язків) називають багатокутником розв’язків, або областю допустимих планів (розв’язків) задачі лінйного програмування. Це може бути точка (єдиний розв’язок), відрізок, промінь, багатокутник, необмежена багатокутна область.
32.Знаходження оптимального розв’язку задачі лінійного програмування. Алгоритм симплексного методу.Суть симплексного методу полягає в тому, що спочатку отримують допустимий розв'язок, який задовольняє всім обмеженням, але не обов'язково оптимальний (початковий опорний план); оптимальність досягається послідовним поліпшуванням початкового варіанту за декілька ітерацій. Напрямок переходу від одного опорного плану до другого вибирається за критерієм оптимальності (цільової функції).Симплекс-метод основується на властивостях ЗЛП: 1. Якщо є екстремум, то він єдиний. 2. Множина всіх планів ЗЛП опукла.3. Цільова функція досягає свого оптимального значення у вершині багатокутника розв'язків..4. Кожній вершині багатокутника розв'язків відповідає опорний план ЗЛП. Для того, щоб вирішити задачу симплексним методом необхідно виконати наступне:
1)Привести завдання до канонічного виду 2)Знайти початкове опорне рішення з "одиничним базисом" (якщо опорне рішення відсутнє, то завдання не має рішення зважаючи несумісності системи обмежень) 3)Обчислити оцінки розкладів векторів по базису опорного рішення і заповнити таблицю симплексного методу Якщо виконується ознака єдиності оптимального рішення, то рішення задачі закінчується Якщо виконується умова існування множини оптимальних рішень, то шляхом простого перебору знаходять все оптимальні рішення
Якщо потрібно максимізувати цільову функцію, то можна перейти до мінімуму max Ly = min(-Ly).Зведемо задачу (13.12), (13.13) до канонічного виду шляхом введення додаткових змінних - y5, y6, y7.
Якщо нерівність в системі обмежень ЗЛП має знак " ≤ ", то додаткову змінну вводять зі знаком "+"; якщо нерівність має знак " ≥ ", то додаткову змінну вводять зі знаком "- ".
- 4. Параметри моделі парної лінійної регресії, їх сутність та оцінювання.
- 5 Коефіцієнт детермінації та кореляції для моделі парної регресії. Перевірка суттєвості коефіцієнта детермінації за допомогою f-критерію.
- 6 Перевірка суттєвості оцінок параметрів на основі t-критерію.
- 7.Передумови застосування методу найменших квадратів.
- 8.Метод найменших квадратів (мнк). Система нормальних рівнянь.
- 12.Перевірка достовірності оцінок параметрів за допомогою t -критерію.
- 13.Поняття фіктивних змінних.
- 14.Врахування якісних факторів в лінійних економетричних моделях за допомогою фіктивних змінних.
- 15.Суть та наслідки мультиколінеарності.
- 16Тестування наявності мультиколінеарності в моделі. Алгоритм Фаррара-Глобера.
- 17.Поняття про гомо- та гетероскедастичність залишків.
- 18.Тест Гольдфельда-Квандта. Послідовність його виконання.
- 19. Алгоритм теста Глейсера.
- 20Перевірка наявності гетероскедастичності залишків на основі теста коефіцієнта рангової кореляції Спірмена.
- 21. Узагальнений метод найменших квадратів для моделі з гетероскедастичністю залишків.
- 22.Суть та наслідки автокореляції стохастичної складової.
- 23.Алгоритм Дарбіна-Уотсона для виявлення автокореляції залишків першого порядку.
- 24.Узагальнений метод найменших квадратів для знаходження оцінок параметрів моделі з автокорельованими залишками.
- 25.Поняття часового лагу. Моделі з часовим лагом незалежних змінних.
- 26. Часовий ряд в загальному вигляді. Поняття тренду, сезонної, циклічної та випадкової компоненти. Основні етапи аналізу числових рядів.
- 28.Модель задачі лінійного програмування в розгорнутому і скороченому вигляді, а також в матричній і векторній формах.
- 29. Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- 31.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- 33.Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- 34.Економічний зміст двоїстої задачі й двоїстих оцінок.
- 35.Перша теорема двоїстості та її економічна інтерпретація.
- 38.Постановка транспортної задачі. Поняття відкритої та закритої моделі.
- 41. Побудова опорного плану транспортної задачі: метод подвійної переваги.
- 42. Побудова опорного плану транспортної задачі: метод апроксимації Фогеля.
- 43.Побудова оптимального плану транспортної задачі: метод потенціалів
- 44.Аналіз розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції.
- 45.Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- 46.Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- 47.Геометрична інтерпретація задачі цілочислового програмування.
- 48.Метод Гоморі.
- 49Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- 50.Графічний метод розв’язування задач нелінійного програмування.
- 51.Метод множників Лагранжа. Теорема Лагранжа. Алгоритм розв’язування задачі на безумовний екстремум.
- 52.Основні поняття теорії ігор.
- 53.Поняття інформаційної ситуації.
- 54.Основні принципи класифікації інформаційних ситуацій. Навести приклади та дати пояснення.
- 55.Матриця ризику, її побудова. Сутність її елементів. Навести приклади.
- 56.Сутність критерію Севіджа. Навести приклади.
- 57. Пояснити, в чому полягає суть критерію Байєса. Навести приклади.
- 61.Сутність критерію Вальда. Навести приклади.
- 62.Дайте означення економічного ризику. Поясніть його сутність.
- 63.Наведіть приклади економічних рішень, обтяжених ризиком. Ідентифікуйте ризики, здійсніть їх якісний аналіз.
- 64. Поясніть основні причини виникнення економічного ризику.
- 65.Пояснити сутність таких понять як: джерело, об`єкт, суб`єкт економічного ризику.
- 66.Загальні засади класифікації ризику.
- 67.Зовнішні та внутрішні чинники ризику. Навести приклади.
- 68.Фінансовий ризик та його особливості.
- 69.Поняття інгредієнту економічного показника.
- 70.Ризик як величина очікуваної невдачі. Навести приклади.
- 71.Які ви знаєте показники кількісної оцінки ризику в абсолютному вираженні? Навести приклади.
- 72.Навести приклади показників ступеня ризику у відносному вираженні.
- 73.Пояснити, що означають терміни: “допустимий”, “критичний”, “катастрофічний” ризик, навести приклади кількісного визначення цих величин.