logo search
Конспект лекций Дискретная математика

Графы, их вершины, рёбра и дуги. Изображение графов.

Определение. Если на плоскости задать конечное множество V точек и конечный набор линий E, соединяющих некоторые пары из точек V, то полученная совокупность точек и линий будет называться графом G = (V, E).

При этом элементы множества V называются вершинами графа, а элементы множества E – ребрами.

Определение. Если вершина v является концом ребра , то говорят, что v и инцидентны.

В множестве V могут встречаться одинаковые элементы, ребра, соединяющие одинаковые элементы называются петлями (на рисунке 1.4 при вершине 5 имеется петля). Одинаковые пары в множестве E называются кратными (или параллельными) ребрами. Количество одинаковых пар (v, w) в E называется кратностью ребра (v, w). Например, на рисунке 1.1 все рёбра имеют кратность 1, а на рисунке 1.2 есть два ребра, соединяющих одни и те же вершины 1 и 4, следовательно, их кратность равна двум.

Множество V и набор E определяют граф с кратными ребрами – псевдограф.

Псевдограф без петель называется мультиграфом.

Если в наборе E ни одна пара не встречается более одного раза, то мультиграф называется графом.

Ниже, на рисунке 1.1 изображен граф, на рисунке 1.2 мультиграф, на рисунке 1.4 – псевдограф.

Графу соответствует геометрическая конфигурация. Вершины обозначаются точками (кружочками), а ребра – линиями, соединяющими соответствующие вершины. На рисунке 1 изображены некоторые неориентированные графы.

Рисунок 1.

1.1 1.2 1.3

1.4 1.5

Замечание 1. Слово “линия”, которое мы используем, подразумевает несущественность того, какая конкретно линия используется для соединения двух вершин графа, то есть её геометрические характеристики не имеют значения.

Замечание 2. Граф можно определить, также как совокупность двух множеств и , между элементами которых установлено отношение инцидентности, при котором каждый элемент инцидентен ровно двум элементам .

Определение. Если х = {v, w} – ребро графа, то вершины v, w называются концами ребра х.

Определение. Если пары в наборе E являются упорядоченными, то граф называется ориентированным или орграфом.

Если пишут = (v, w) – дуга орграфа, то вершина v – начало, а вершина w – конец дуги х.

Определение. Вершины v, w графа G = (V, E) называются смежными, если {v,w}Е. Два ребра называются смежными, если они имеют общую вершину.

Определение. Степенью вершины графа называется число ребер, которым эта вершина принадлежит. Вершина называется висячей, если ее степень равна единице и изолированной, если ее степень равна нулю.

На рисунке 1.5 все вершины, кроме вершины 1, являются висячими. На рисунке 1.3 вершина 4 является изолированной. Если граф состоит только из таких вершин, его называют пустым. В некоторых случаях пустым называют граф, не имеющей ни одной вершины.

Рисунок 2.

2.1 2.2 2.3

    1. 2.5

На рисунке 2 представлены различные типы ориентированных графов.

Заметим, что каждому неориентированному графу можно поставить в соответствие ориентированный граф с тем же множеством вершин, в котором каждое ребро заменено двумя противоположными рёбрами, инцидентными тем же вершинам. Такое соответствие называется каноническим.