Обратная матрица.
Понятние обратной матрицы существует только для квадратных матриц.
Определение. Пусть а – квадратная матрица. Матрицей, обратной А, называется матрица, обозначаемая А-1, такая что АА-1 = А-1А = Е, где Е – единичная матрица.
Квадаратная матрица называется невырожденной, если ее определитель отличен от нуля, и вырожденной – в противном случае.
Теорема: для того, чтобы квадратная матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.
Доказательство. Есть А-1 detA0
Необходимость. У А есть А-1
Надо доказать что detA0
Т.к. АА-1 = Е => det(AA-1) = detE => detAdetA-1 = detE. Т.е. detAdetA-1=1 =>detA0
Достаточность. Дано: detA0. Надо доказать что существует А-1
Схема построения обратной матрицы.
Находим detA=d0
Находим все алгебраические дополнения Aij
Строим матрицу Ас = (Aij)T
A-1 = (1/detA)Ac
Если обратная матрица существует, то она единственная. Действительно. A, detA0 и пусть B, C – две обратные к А.
Рассмотрим. BAC = (BA)C = EC = C => B=C
B(AC) = BE = B
Понятие обратной матрицы позволяет решать т.н. матричные ур-я вида АХ = В, где А, В – заданные матрицы, Х – неизвестная матрица.
Действительно. Если |A|0 , то есть A-1 умножим: A-1(AX) = A-1B => X=A-1B
Аналогично: XA = B, X=BA-1
Или: AXB = C => X = A-1CB-1
- Матрицы. Линейные операции над матрицами.
- Умножение матриц.
- Свойства определителей
- Минор, алгебраическое дополнение, теорема лапласа.
- Обратная матрица.
- Ранг матрицы. Вычисление ранга.
- Системы лау. Методы решения невырожденных систем.
- Векторы. Линейные операции над векторами.
- Прямоугольная система координат. Направляющие косинусы вектора.
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов. Компланарность трех векторов.
- Деление отрезка в данном отношении
- Уравнение плоскости, проходящей через точку перпендикулярно вектору.
- Уравнение плоскости, проходящей через точку параллельно 2-м векторам.
- Уравнение плоскости, проходящей через 3 точки.
- Расстояние от точки до плоскости. Угол между плоскостями.
- Параметрическое и каноническое уравнение прямой.
- Общее уравнение прямой в пространстве. Приведение к каноническому виду.
- Расстояние от точки до прямой в пространстве.
- Угол между прямыми в пространстве. Угол между прямой и плоскостью.
- Общее уравнение прямой на плоскости
- Уравнение прямой в отрезках и с угловым коэффициентом.
- Расстояние от точки до прямой на плоскости.
- Угол между прямыми на плоскости.
- 32. Предел последовательности и его свойства.
- Число е.
- Предел функции в точке, бесконечности. Односторонние пределы.
- Теоремы о пределах функции.
- Первый замечательный предел.
- Второй замечательный предел. Эквивалентность бесконечно малых.
- Непрерывность функций. Классификация точек разрыва.
- Свойства непрерывных функций.
- Производная. Геометрический и механический смысл производной.
- Дифференцирование суммы(разности) функций.
- Дифференцирование произведения функций.
- Дифференцирование частного двух функций.
- Производная сложной и обратной функции.
- Логарифмическое дифференцирование и его применение.
- Производная функции, заданной параметрически.
- Дифференциал. Инвариантность формы.
- Применение дифференциала к приближенным вычислениям.
- Экстремум функции. Необходимое условие экстремума.
- Экстремум функции. Первое достаточное условие экстремума.
- Экстремум функции. Второе достаточное условие экстремума.
- Выпуклость и вогнутость графика функции. Точки перегиба.
- Ассимптоты графика функции.
- Формула тейлора.