Прямоугольная система координат. Направляющие косинусы вектора.
Выберем в пространстве произвольную точку О, которую будем называть началом координат. Помести базисные вектора {i,j,k} своими началами в точку О. Через начало координат и базисные векторы проводим прямые, которые называются осями координат, причем прямая, проходящая через вектор i – ось ох (ось абсцисс), через j – оу (ось ординат), через k - ось oz (ось аппликат). Конец каждого базисного вектора отмечает на оси число 1.
Пусть М – произвольная точка пространства. Вектор . Соединяющий начало координат с точкой М – радиус-вектор точки М. Вектор единственным образом разлагается по базису, т.е. существуют такие числа x,y,z что вектор = x + y + z . Координатами точки М в прямоугольной системе координат Оxyz называются координаты вектора ОМ в базисе {i,j,k}.
Для того, чтобы найчти координаты вектора, если известны координаты его начала и конца, нужно из координат конца вектора вычесть координаты его начала.
Направляющие косинусы вектора.
Пусть точка М(x,y,z); =
Пусть вектор а составляет с осями координат углы , , . Косинусы этих углов – направляющие косинусы вектора а.
Пусть вектор а (ax,ay,az)
ax = Прi = | |cos
ay = Прj = | |cos
az = Прk = | |cos
cos = cos= cos=
т.к. =
то cos =
cos =
cos =
направляющие векторы обладают след св-вами:
cos2+cos2+cos2=1
пусть (ax,ay,az) – произвольный вектор. Требуется найти 0 , который обладает след св-вами.
0 | 0 |=1
0 = 0 = = 0 ( , , ) => 0 (cos, cos, cos)
- Матрицы. Линейные операции над матрицами.
- Умножение матриц.
- Свойства определителей
- Минор, алгебраическое дополнение, теорема лапласа.
- Обратная матрица.
- Ранг матрицы. Вычисление ранга.
- Системы лау. Методы решения невырожденных систем.
- Векторы. Линейные операции над векторами.
- Прямоугольная система координат. Направляющие косинусы вектора.
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов. Компланарность трех векторов.
- Деление отрезка в данном отношении
- Уравнение плоскости, проходящей через точку перпендикулярно вектору.
- Уравнение плоскости, проходящей через точку параллельно 2-м векторам.
- Уравнение плоскости, проходящей через 3 точки.
- Расстояние от точки до плоскости. Угол между плоскостями.
- Параметрическое и каноническое уравнение прямой.
- Общее уравнение прямой в пространстве. Приведение к каноническому виду.
- Расстояние от точки до прямой в пространстве.
- Угол между прямыми в пространстве. Угол между прямой и плоскостью.
- Общее уравнение прямой на плоскости
- Уравнение прямой в отрезках и с угловым коэффициентом.
- Расстояние от точки до прямой на плоскости.
- Угол между прямыми на плоскости.
- 32. Предел последовательности и его свойства.
- Число е.
- Предел функции в точке, бесконечности. Односторонние пределы.
- Теоремы о пределах функции.
- Первый замечательный предел.
- Второй замечательный предел. Эквивалентность бесконечно малых.
- Непрерывность функций. Классификация точек разрыва.
- Свойства непрерывных функций.
- Производная. Геометрический и механический смысл производной.
- Дифференцирование суммы(разности) функций.
- Дифференцирование произведения функций.
- Дифференцирование частного двух функций.
- Производная сложной и обратной функции.
- Логарифмическое дифференцирование и его применение.
- Производная функции, заданной параметрически.
- Дифференциал. Инвариантность формы.
- Применение дифференциала к приближенным вычислениям.
- Экстремум функции. Необходимое условие экстремума.
- Экстремум функции. Первое достаточное условие экстремума.
- Экстремум функции. Второе достаточное условие экстремума.
- Выпуклость и вогнутость графика функции. Точки перегиба.
- Ассимптоты графика функции.
- Формула тейлора.