Часть 5. Лабораторные работы 97
Лабораторная работа 1. Первичная обработка лингвистической информации. Описательные статистики. 98
Лабораторная работа 2. Проверка гипотезы о нормальности распределения лингвистической информации. 100
Лабораторная работа 3 Оценка параметров лингвистической случайной величины по выборке. 104
Лабораторная работа 4. Проверка гипотезы о существовании значимых отличий параметров распределения лингвистической случайной величины. 106
Лабораторная работа 5 Корреляционный анализ. Построение модели линейной регрессии лингвистической информации. 108
Лабораторная работа 6. Однофакторный дисперсионный анализ. Исследование влияния стиля речи на частоту употребления глагольных форм. 111
Список рекомендованной литературы 116
Приложение. Таблицы математической статистики. 117
Введение
- Часть1. Тематический план дисциплины
- Часть 2. Конспекты лекций 8
- Часть 3. Вопросы и задания для практических работ. 79
- Часть 4. Задания для самостоятельной работы 92
- Часть 5. Лабораторные работы 97
- Часть1. Тематический план дисциплины «Основы математической обработки информации»
- Часть 2. Конспекты лекций
- 1.1. Исторические периоды развития математики.
- 1.2. Основы теории множеств
- 1.2.1. Начальные понятия теории множеств.
- 2.1.3. Основные понятия комбинаторики
- 2) Перестановка из n элементов – это размещение из n элементов по n.
- 2.2. Начальные понятия теории вероятностей
- 2.2.2. Определения вероятности событий
- 3.1. Действия над событиями
- 3.2. Вероятность суммы событий
- 3.3. Вероятность произведения событий.
- 3.4. Вычисление вероятности цепочек языковых элементов.
- 3.5. Формула полной вероятности. Формула Байеса.
- 1 H2) Формула полной вероятности.
- 3.6. Теорема Бернулли
- 3.7. Вероятностное моделирование порождения текста.
- 3.8. Предельные теоремы в схеме Бернулли
- 4.1. Случайная величина (св). Начальные понятия.
- 4.2. Функция распределения св (интегральная функция распределения) f(X)
- 4.3. Функция плотности вероятности нсв f(X)
- 4.4. Числовые характеристики св
- 4.5. Законы распределения случайных величин.
- 1) Биномиальный закон распределения.
- 2) Закон Пуассона
- 3) Нормальное распределение (закон Гаусса)
- 6. Вероятность попадания нсв х в заданный промежуток
- 7. Логнормальное распределение
- 5.1. Система двух случайных величин (двумерная св) (1 час)
- 5.1.1. Начальные понятия.
- 5.1.2. Операции над независимыми случайными величинами
- 5.1.3. Числовые характеристики системы двух св
- 5.2. Предельные теоремы теории вероятностей: Закон больших чисел, Центральная предельная теорема и их значение для лингвистического эксперимента.(1 час)
- 5.2.1. Теорема Чебышева для среднего арифметического случайных величин.
- 6.1. Предмет математической статистики. Генеральная и выборочная совокупность.
- 6.2. Статистическое распределение выборки и его графическое изображение
- 6.2.1. Дискретный статистический ряд
- 6.2.2. Интервальный статистический ряд
- 6.3. Числовые характеристики статистического распределения
- Лекция 7. Элементы теории статистических оценок и проверки гипотез.
- 7.1 Статистические оценки параметров распределения и их свойства. Оценка параметров генеральной совокупности по выборке
- 7.1.1. Свойства статистических оценок:
- 7.1.2. Точечные оценки математического ожидания, дисперсии и вероятности.
- 7.1.3. Интервальное оценивание параметров.
- 7.1.4. Доверительные интервалы для параметров нормального распределения
- 7.1.5. Число степеней свободы
- 7.1.7. Определение минимально достаточного объёма выборки в грамматических, фонетико-фонологических и лексикологических исследованиях.
- 7.2. Проверка статистических гипотез. Исследование вероятностных свойств языка и статистики текста с помощью метода гипотез.
- 7.2. Проверка статистических гипотез.
- 7.2.1. Статистические гипотезы.
- 7.2.2. Статистический критерий
- 4.2.3. Принцип проверки статистических гипотез
- 7.2.4. Ошибки при проверке гипотез
- 7.2.5. Проверка лингвистических гипотез с помощью параметрических критериев.
- 7.2.6. Проверка гипотез с помощью непараметрических критериев.
- Часть 3. Вопросы и задания для практических работ.
- I. Элементы комбинаторики.
- Часть 4. Задания для самостоятельной работы
- 1. Графический способ.
- 2. Критерий асимметрии и эксцесса.
- 3. Критерий Колмогорова-Смирнова.
- 4. Критерий Пирсона
- Приложение 1. Значения интегральной функции Лапласа
- Приложение 2. Критические значения ( распределение Пирсона)