70.Ризик як величина очікуваної невдачі. Навести приклади.
Безсумнівний інтерес становить така оцінка ризику невдачі, яка ґрунтується на всьому спектрі можливих результатів (збитків, платежів тощо). Якщо ж відомі всі можливі наслідки окремої події та ймовірності їх настання, то для оцінки міри (ступеня) ризику використовується величина очікуваної невдачі (сподіване значення, математичне сподівання), пов’язана з невизначеністю, тобто середньозважена величина цих можливих результатів, де ймовірність кожного з них використовується як частота або питома вага відповідного значення. У випадку, коли всі можливі наслідки події описуються дискретною випадковою величиною Х= Х –={x1; x2;…; xn}, а розподіл ймовірностей їх настання P = {p1; p2;…; pn}; , величина ризику очікуваної невдачі:W = M(Х –) = . Якщо ж несприятливі наслідки події описуються неперервною випадковою величиною, тоW = M(Х –) = , деf(x) — щільність розподілу ймовірності. Приклад 3.5.Надаючи банківський кредит комерційній фірмі, здійснюють прогноз можливих значень збитків та відповідних значень ймовірності. Числові дані подано в табл.3.1. Таблиця 3.1
Оцінка можливого результату | Прогнозовані збитки, тис. гривень | Значення ймовірності |
Песимістична Стримана Оптимістична | 30 6 – 40 | 0,2 0,5 0,3 |
Визначити сподівану величину ризику, тобто збитків. Розв’язання. Випадкова величина Х, що характеризує можливі збитки, Х – ={30; 6; – 40}. Тоді величина ризику (сподіваних збитків): тобто комерційній фірмі можна надати кредит, оскільки величина сподіваних збитків становитьW = – 3, а це вказує на можливість прибутку.- ! Висновок. Сподіване значення є центром групування реалізацій випадкової величини Х, а тому його можна розглядати як результат (ризик), який ми очікуємо в середньому.
- 4. Параметри моделі парної лінійної регресії, їх сутність та оцінювання.
- 5 Коефіцієнт детермінації та кореляції для моделі парної регресії. Перевірка суттєвості коефіцієнта детермінації за допомогою f-критерію.
- 6 Перевірка суттєвості оцінок параметрів на основі t-критерію.
- 7.Передумови застосування методу найменших квадратів.
- 8.Метод найменших квадратів (мнк). Система нормальних рівнянь.
- 12.Перевірка достовірності оцінок параметрів за допомогою t -критерію.
- 13.Поняття фіктивних змінних.
- 14.Врахування якісних факторів в лінійних економетричних моделях за допомогою фіктивних змінних.
- 15.Суть та наслідки мультиколінеарності.
- 16Тестування наявності мультиколінеарності в моделі. Алгоритм Фаррара-Глобера.
- 17.Поняття про гомо- та гетероскедастичність залишків.
- 18.Тест Гольдфельда-Квандта. Послідовність його виконання.
- 19. Алгоритм теста Глейсера.
- 20Перевірка наявності гетероскедастичності залишків на основі теста коефіцієнта рангової кореляції Спірмена.
- 21. Узагальнений метод найменших квадратів для моделі з гетероскедастичністю залишків.
- 22.Суть та наслідки автокореляції стохастичної складової.
- 23.Алгоритм Дарбіна-Уотсона для виявлення автокореляції залишків першого порядку.
- 24.Узагальнений метод найменших квадратів для знаходження оцінок параметрів моделі з автокорельованими залишками.
- 25.Поняття часового лагу. Моделі з часовим лагом незалежних змінних.
- 26. Часовий ряд в загальному вигляді. Поняття тренду, сезонної, циклічної та випадкової компоненти. Основні етапи аналізу числових рядів.
- 28.Модель задачі лінійного програмування в розгорнутому і скороченому вигляді, а також в матричній і векторній формах.
- 29. Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- 31.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- 33.Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- 34.Економічний зміст двоїстої задачі й двоїстих оцінок.
- 35.Перша теорема двоїстості та її економічна інтерпретація.
- 38.Постановка транспортної задачі. Поняття відкритої та закритої моделі.
- 41. Побудова опорного плану транспортної задачі: метод подвійної переваги.
- 42. Побудова опорного плану транспортної задачі: метод апроксимації Фогеля.
- 43.Побудова оптимального плану транспортної задачі: метод потенціалів
- 44.Аналіз розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції.
- 45.Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- 46.Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- 47.Геометрична інтерпретація задачі цілочислового програмування.
- 48.Метод Гоморі.
- 49Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- 50.Графічний метод розв’язування задач нелінійного програмування.
- 51.Метод множників Лагранжа. Теорема Лагранжа. Алгоритм розв’язування задачі на безумовний екстремум.
- 52.Основні поняття теорії ігор.
- 53.Поняття інформаційної ситуації.
- 54.Основні принципи класифікації інформаційних ситуацій. Навести приклади та дати пояснення.
- 55.Матриця ризику, її побудова. Сутність її елементів. Навести приклади.
- 56.Сутність критерію Севіджа. Навести приклади.
- 57. Пояснити, в чому полягає суть критерію Байєса. Навести приклади.
- 61.Сутність критерію Вальда. Навести приклади.
- 62.Дайте означення економічного ризику. Поясніть його сутність.
- 63.Наведіть приклади економічних рішень, обтяжених ризиком. Ідентифікуйте ризики, здійсніть їх якісний аналіз.
- 64. Поясніть основні причини виникнення економічного ризику.
- 65.Пояснити сутність таких понять як: джерело, об`єкт, суб`єкт економічного ризику.
- 66.Загальні засади класифікації ризику.
- 67.Зовнішні та внутрішні чинники ризику. Навести приклади.
- 68.Фінансовий ризик та його особливості.
- 69.Поняття інгредієнту економічного показника.
- 70.Ризик як величина очікуваної невдачі. Навести приклади.
- 71.Які ви знаєте показники кількісної оцінки ризику в абсолютному вираженні? Навести приклади.
- 72.Навести приклади показників ступеня ризику у відносному вираженні.
- 73.Пояснити, що означають терміни: “допустимий”, “критичний”, “катастрофічний” ризик, навести приклади кількісного визначення цих величин.