Свойства определителей
Каждой квадратной матрице можно поставить в соответствие число, которое называется определителем, которое обозначается d(A) или = detA
Для матрицы A1 = (a)
Det(a) = |a| = a
A2 =
= a11a22 – a12a21
detA3 = a11a22a33 + a12a23a31 + a21a32a13 – a13a22a31 – a12a21a33 – a23a32a11
свойства определителей.
Det(AB) = det(A)det(B)
detA = detAT Определитель матрицы равен определителю транспонированной матрицы, т.е. любое верное утверждение относительно строк определителя остается верным и для столбцов
общий множитель любой строки (столбца) определителя можно вынести за знак определителя, т.о. если у определителя имеется нулевая строка (столбец), то он равен нулю.
Если у определителля поменять местами любые две строки (столбца), то он изменит знак на противоположный, т.е. если у определителя 2 одинаковых (пропорциональные) строки (столбца), то он равен нулю.
Если каждый элемент строки/столбца представлен в виде суммы 2ух слагаемых, то этот определитель равен сумме 2ух определителей.
Если к одной троке определителся прибавить любую другую строку, умноженную на любое число, то он не изменится.
-
Содержание
- Матрицы. Линейные операции над матрицами.
- Умножение матриц.
- Свойства определителей
- Минор, алгебраическое дополнение, теорема лапласа.
- Обратная матрица.
- Ранг матрицы. Вычисление ранга.
- Системы лау. Методы решения невырожденных систем.
- Векторы. Линейные операции над векторами.
- Прямоугольная система координат. Направляющие косинусы вектора.
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов. Компланарность трех векторов.
- Деление отрезка в данном отношении
- Уравнение плоскости, проходящей через точку перпендикулярно вектору.
- Уравнение плоскости, проходящей через точку параллельно 2-м векторам.
- Уравнение плоскости, проходящей через 3 точки.
- Расстояние от точки до плоскости. Угол между плоскостями.
- Параметрическое и каноническое уравнение прямой.
- Общее уравнение прямой в пространстве. Приведение к каноническому виду.
- Расстояние от точки до прямой в пространстве.
- Угол между прямыми в пространстве. Угол между прямой и плоскостью.
- Общее уравнение прямой на плоскости
- Уравнение прямой в отрезках и с угловым коэффициентом.
- Расстояние от точки до прямой на плоскости.
- Угол между прямыми на плоскости.
- 32. Предел последовательности и его свойства.
- Число е.
- Предел функции в точке, бесконечности. Односторонние пределы.
- Теоремы о пределах функции.
- Первый замечательный предел.
- Второй замечательный предел. Эквивалентность бесконечно малых.
- Непрерывность функций. Классификация точек разрыва.
- Свойства непрерывных функций.
- Производная. Геометрический и механический смысл производной.
- Дифференцирование суммы(разности) функций.
- Дифференцирование произведения функций.
- Дифференцирование частного двух функций.
- Производная сложной и обратной функции.
- Логарифмическое дифференцирование и его применение.
- Производная функции, заданной параметрически.
- Дифференциал. Инвариантность формы.
- Применение дифференциала к приближенным вычислениям.
- Экстремум функции. Необходимое условие экстремума.
- Экстремум функции. Первое достаточное условие экстремума.
- Экстремум функции. Второе достаточное условие экстремума.
- Выпуклость и вогнутость графика функции. Точки перегиба.
- Ассимптоты графика функции.
- Формула тейлора.