Свойства непрерывных функций.
Теорема 1. Если ф-я f(x) непрерывна на замкнутом отрезке [a,b], то она достигает на нем своего наибольшего и наименьшего значения.
Теорема 2. (о сохранении знака). Если ф-я непрерывна в некоторой О(x0) – окрестности и f(x0)0, то существует О(x0) – окрестность, в которой знаки f(x0) и f(x) совпадают.
Теорема 3. (о прохождении через 0). Пусть f(x) непрерывна на [a,b] и f(a)f(b)<0 , т.е. на концах отрезка ф-я принимает значения разных знаков. Тогда внутри интервала [a,b] существует точка С такая, что f(C) = 0. Замечание: если ф-я f(x) строго монотонная, то такая точка С единственная.
Теорема 4. (о промежуточных значениях). Если f(x) непрерывна на [a,b] и f(a) = A B = f(b), тогда для любой точки С[А,В] существует x0[a,b] такое, что f(x0) = C. Замечание: если ф-я f(x) строго монотонна на [a,b], то x0 – единственная.
Теорема 5. Пусть ф-я f(x) g(x) непрерынвы в точке x0, тогда:
f(x)+-g(x) непрерывна в точке x0
f(x)g(x) непрерывна в точке x0
f(x)/g(x) непрерывна в точке x0 если g(x)
непрерывность сложной и обратной функции.
Пусть u = (x) – непрерывна на [a,b] и y = f(u) непрерывна на [c,d], содержащем все значения ф-ии (x) на [a,b].
Теорема. Если ф-я непрерывна и строго монотонна на [a,b], то обратная ф-я x = f-1(y) непрерывна на промежутке [f(a),f(b)].
-
Содержание
- Матрицы. Линейные операции над матрицами.
- Умножение матриц.
- Свойства определителей
- Минор, алгебраическое дополнение, теорема лапласа.
- Обратная матрица.
- Ранг матрицы. Вычисление ранга.
- Системы лау. Методы решения невырожденных систем.
- Векторы. Линейные операции над векторами.
- Прямоугольная система координат. Направляющие косинусы вектора.
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов. Компланарность трех векторов.
- Деление отрезка в данном отношении
- Уравнение плоскости, проходящей через точку перпендикулярно вектору.
- Уравнение плоскости, проходящей через точку параллельно 2-м векторам.
- Уравнение плоскости, проходящей через 3 точки.
- Расстояние от точки до плоскости. Угол между плоскостями.
- Параметрическое и каноническое уравнение прямой.
- Общее уравнение прямой в пространстве. Приведение к каноническому виду.
- Расстояние от точки до прямой в пространстве.
- Угол между прямыми в пространстве. Угол между прямой и плоскостью.
- Общее уравнение прямой на плоскости
- Уравнение прямой в отрезках и с угловым коэффициентом.
- Расстояние от точки до прямой на плоскости.
- Угол между прямыми на плоскости.
- 32. Предел последовательности и его свойства.
- Число е.
- Предел функции в точке, бесконечности. Односторонние пределы.
- Теоремы о пределах функции.
- Первый замечательный предел.
- Второй замечательный предел. Эквивалентность бесконечно малых.
- Непрерывность функций. Классификация точек разрыва.
- Свойства непрерывных функций.
- Производная. Геометрический и механический смысл производной.
- Дифференцирование суммы(разности) функций.
- Дифференцирование произведения функций.
- Дифференцирование частного двух функций.
- Производная сложной и обратной функции.
- Логарифмическое дифференцирование и его применение.
- Производная функции, заданной параметрически.
- Дифференциал. Инвариантность формы.
- Применение дифференциала к приближенным вычислениям.
- Экстремум функции. Необходимое условие экстремума.
- Экстремум функции. Первое достаточное условие экстремума.
- Экстремум функции. Второе достаточное условие экстремума.
- Выпуклость и вогнутость графика функции. Точки перегиба.
- Ассимптоты графика функции.
- Формула тейлора.