38.Постановка транспортної задачі. Поняття відкритої та закритої моделі.
Класична транспортна задача лінійного програмування формулюється так: деякий однорідний продукт, що знаходиться у m постачальників Аі в обсягах одиниць відповідно необхідно перевезтиn споживачам вобсягаходиниць. При цьому виконується умова, що загальний наявний обсяг продукції у постачальників дорівнює загальному попиту всіх споживачів. Відомі вартостіперевезень одиниці продукції від кожногоАі-го постачальника до кожного Вj-го споживача, що подані як елементи матриці виду:
Необхідно визначити план перевезень, за якого вся продукція була б вивезена від постачальників, повністю задоволені потреби споживачів і загальна вартість всіх перевезень була б мінімальною. У такій постановці задачі ефективність плану перевезень визначається його вартістю і така задача має назву транспортної задачі за критерієм вартості перевезень.
У скороченій формі запису математична модель транспортної задачі за критерієм вартості перевезень має такий вигляд:
(5.1) за обмежень:
;; (5.3). (5.4)
У розглянутій задачі має виконуватися умова: . (5.5)
Транспортну задачу називають збалансованою, або закритою, якщо виконується умова (5.5). Якщо ж така умова не виконується, то транспортну задачу називають незбалансованою, або відкритою.
39.Побудова опорного плану транспортної задачі: метод мінімальної вартості. Оптимальним планом транспортної задачі називають матрицю , яка задовольняє умови задачі, і для якої цільова функція (5.1) набирає найменшого значення.
Теорема (умова існування розв’язку транспортної задачі): необхідною і достатньою умовою існування розв’язку транспортної задачі (5.1)—(5.4) є її збалансованість: .
Наявність у системі обмежень двох однакових рівнянь свідчить про її лінійну залежність. Якщо одне з цих рівнянь відкинути, то в загальному випадку система обмежень буде містити m + n – 1 лінійно незалежне рівняння, отже, їх можна розв’язати відносно m + n – 1 базиснихзмінних.Назвемо опорним планомтранспортної задачі такий допустимий її план, що містить не більш ніж m + n – 1 додатних компонент, а всі інші його компоненти дорівнюють нулю. Такий план є невиродженим. Якщо ж кількість базисних змінних менша ніж m + n – 1, то маємо вироджений опорний план.Ідея методу мінімальної вартості полягає в тому, що на кожному кроці заповнюють клітинку таблиці, яка має найменшу вартість перевезення одиниці продукції. Такі дії повторюють доти, доки не буде розподілено всю продукцію між постачальниками та споживачами.
40.Побудова опорного плану транспортної задачі: метод північно-західного кута. розв’язування транспортної задачі полягає в цілеспрямованому переборі та перевірці на оптимальність опорних планів. Початком такого ітераційного процесу є побудова першого опорного плану.
Ідея методу північно-західного кута полягає в тому, що заповнення таблиці починають, не враховуючи вартостей перевезень, з лівого верхнього (північно-західного) кута. У клітину записують менше з двох чисел а1 та b1. Далі переходять до наступної клітини в цьому ж рядку або у стовпчику і заповнюють її, і т. д. Закінчують заповнення таблиці у правій нижній клітинці. У такий спосіб значення поставок будуть розташовані по діагоналі таблиці.
- 4. Параметри моделі парної лінійної регресії, їх сутність та оцінювання.
- 5 Коефіцієнт детермінації та кореляції для моделі парної регресії. Перевірка суттєвості коефіцієнта детермінації за допомогою f-критерію.
- 6 Перевірка суттєвості оцінок параметрів на основі t-критерію.
- 7.Передумови застосування методу найменших квадратів.
- 8.Метод найменших квадратів (мнк). Система нормальних рівнянь.
- 12.Перевірка достовірності оцінок параметрів за допомогою t -критерію.
- 13.Поняття фіктивних змінних.
- 14.Врахування якісних факторів в лінійних економетричних моделях за допомогою фіктивних змінних.
- 15.Суть та наслідки мультиколінеарності.
- 16Тестування наявності мультиколінеарності в моделі. Алгоритм Фаррара-Глобера.
- 17.Поняття про гомо- та гетероскедастичність залишків.
- 18.Тест Гольдфельда-Квандта. Послідовність його виконання.
- 19. Алгоритм теста Глейсера.
- 20Перевірка наявності гетероскедастичності залишків на основі теста коефіцієнта рангової кореляції Спірмена.
- 21. Узагальнений метод найменших квадратів для моделі з гетероскедастичністю залишків.
- 22.Суть та наслідки автокореляції стохастичної складової.
- 23.Алгоритм Дарбіна-Уотсона для виявлення автокореляції залишків першого порядку.
- 24.Узагальнений метод найменших квадратів для знаходження оцінок параметрів моделі з автокорельованими залишками.
- 25.Поняття часового лагу. Моделі з часовим лагом незалежних змінних.
- 26. Часовий ряд в загальному вигляді. Поняття тренду, сезонної, циклічної та випадкової компоненти. Основні етапи аналізу числових рядів.
- 28.Модель задачі лінійного програмування в розгорнутому і скороченому вигляді, а також в матричній і векторній формах.
- 29. Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- 31.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- 33.Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- 34.Економічний зміст двоїстої задачі й двоїстих оцінок.
- 35.Перша теорема двоїстості та її економічна інтерпретація.
- 38.Постановка транспортної задачі. Поняття відкритої та закритої моделі.
- 41. Побудова опорного плану транспортної задачі: метод подвійної переваги.
- 42. Побудова опорного плану транспортної задачі: метод апроксимації Фогеля.
- 43.Побудова оптимального плану транспортної задачі: метод потенціалів
- 44.Аналіз розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції.
- 45.Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- 46.Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- 47.Геометрична інтерпретація задачі цілочислового програмування.
- 48.Метод Гоморі.
- 49Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- 50.Графічний метод розв’язування задач нелінійного програмування.
- 51.Метод множників Лагранжа. Теорема Лагранжа. Алгоритм розв’язування задачі на безумовний екстремум.
- 52.Основні поняття теорії ігор.
- 53.Поняття інформаційної ситуації.
- 54.Основні принципи класифікації інформаційних ситуацій. Навести приклади та дати пояснення.
- 55.Матриця ризику, її побудова. Сутність її елементів. Навести приклади.
- 56.Сутність критерію Севіджа. Навести приклади.
- 57. Пояснити, в чому полягає суть критерію Байєса. Навести приклади.
- 61.Сутність критерію Вальда. Навести приклади.
- 62.Дайте означення економічного ризику. Поясніть його сутність.
- 63.Наведіть приклади економічних рішень, обтяжених ризиком. Ідентифікуйте ризики, здійсніть їх якісний аналіз.
- 64. Поясніть основні причини виникнення економічного ризику.
- 65.Пояснити сутність таких понять як: джерело, об`єкт, суб`єкт економічного ризику.
- 66.Загальні засади класифікації ризику.
- 67.Зовнішні та внутрішні чинники ризику. Навести приклади.
- 68.Фінансовий ризик та його особливості.
- 69.Поняття інгредієнту економічного показника.
- 70.Ризик як величина очікуваної невдачі. Навести приклади.
- 71.Які ви знаєте показники кількісної оцінки ризику в абсолютному вираженні? Навести приклади.
- 72.Навести приклади показників ступеня ризику у відносному вираженні.
- 73.Пояснити, що означають терміни: “допустимий”, “критичний”, “катастрофічний” ризик, навести приклади кількісного визначення цих величин.