Предел функции в точке, бесконечности. Односторонние пределы.
Пусть f(x) – некоторая ф-я, x0R
Определение: число А называется пределом функции f(x) в точке x0 , если для любой последовательности xn , сходящейся к x0 ( = x0 ) соответствующая последовательность значений функции f(xn ) сходится к А.
= A
Определение. Число А называется пределом функции в (-) если для любого >0 существует = ()>0 такое, что при всех x> (x< -) выполняется неравенство |f(x) – A|<
= A ( = A)
Определение. Говорят, что в точке x0 функция f(x) имеет своим пределом +(-) если для любого Е>0 существует =(E)>0 такое, что при всех x( x0-, x0+) выполняется f(x)>E (f(x)<-E)
= +(-)
Односторонние пределы.
Определение. Число А называется левосторонним (пределом слева) пределом функции f(x) в точке x0 если такое, что при всех х x0 x0) выпоняется |f(x) – A|<
= A.
Аналогично – правосторонний предел. х x0 x0+, |f(x) – A|<
= A.
- Матрицы. Линейные операции над матрицами.
- Умножение матриц.
- Свойства определителей
- Минор, алгебраическое дополнение, теорема лапласа.
- Обратная матрица.
- Ранг матрицы. Вычисление ранга.
- Системы лау. Методы решения невырожденных систем.
- Векторы. Линейные операции над векторами.
- Прямоугольная система координат. Направляющие косинусы вектора.
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов. Компланарность трех векторов.
- Деление отрезка в данном отношении
- Уравнение плоскости, проходящей через точку перпендикулярно вектору.
- Уравнение плоскости, проходящей через точку параллельно 2-м векторам.
- Уравнение плоскости, проходящей через 3 точки.
- Расстояние от точки до плоскости. Угол между плоскостями.
- Параметрическое и каноническое уравнение прямой.
- Общее уравнение прямой в пространстве. Приведение к каноническому виду.
- Расстояние от точки до прямой в пространстве.
- Угол между прямыми в пространстве. Угол между прямой и плоскостью.
- Общее уравнение прямой на плоскости
- Уравнение прямой в отрезках и с угловым коэффициентом.
- Расстояние от точки до прямой на плоскости.
- Угол между прямыми на плоскости.
- 32. Предел последовательности и его свойства.
- Число е.
- Предел функции в точке, бесконечности. Односторонние пределы.
- Теоремы о пределах функции.
- Первый замечательный предел.
- Второй замечательный предел. Эквивалентность бесконечно малых.
- Непрерывность функций. Классификация точек разрыва.
- Свойства непрерывных функций.
- Производная. Геометрический и механический смысл производной.
- Дифференцирование суммы(разности) функций.
- Дифференцирование произведения функций.
- Дифференцирование частного двух функций.
- Производная сложной и обратной функции.
- Логарифмическое дифференцирование и его применение.
- Производная функции, заданной параметрически.
- Дифференциал. Инвариантность формы.
- Применение дифференциала к приближенным вычислениям.
- Экстремум функции. Необходимое условие экстремума.
- Экстремум функции. Первое достаточное условие экстремума.
- Экстремум функции. Второе достаточное условие экстремума.
- Выпуклость и вогнутость графика функции. Точки перегиба.
- Ассимптоты графика функции.
- Формула тейлора.