Функции алгебры логики.
Определение. Алгебра, образованная множеством вместе со всеми возможными операциями на нём, называется алгеброй логики.
Определение. Функцией алгебры логики (логической функцией) называется арная операция на множестве .
Первый термин является более точным, однако второй более распространён, особенно в приложениях. Он и будет использоваться в дальнейшем. Итак, логическая функция - это функция, принимающая значения 0 или 1. Множество всех логических функций будем обозначать , множество всех логических функций переменных - .
Определение. Алгебра, образованная элементным множеством вместе со всеми операциями на нём, называется алгеброй значной логики, а арная операция на элементном множестве называется значной логической функцией.
Множество всех значных логических функций обозначается . Мы в дальнейшем будем рассматривать логические функции только из .
Всякая логическая функция переменных может быть задана таблицей, в левой части которой перечислены все наборы значений переменных (которых всего ), а в правой части – значение функции на этих наборах значений. Ниже приведена таблица, задающая некоторую функцию трёх переменных.
Наборы, на которых значение функции равно 1, часто называют единичными наборами функции , а множество единичных наборов называют единичным множеством функции . Аналогично, наборы, на которых значение функции равно 0, называют нулевыми наборами функции . В приводимой таблице три единичных набора и пять нулевых наборов.
|
|
|
|
0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 1 | 0 |
Таблица 1.
Заметим, что наборы в таблице расположены в определённом порядке – лексикографическом, который совпадает с возрастанием наборов, если рассматривать их как двоичные числа. Этим упорядочением будем пользоваться в дальнейшем. При любом фиксированном упорядочении наборов логическая функция переменных полностью определяется вектор-столбцом значений функции, то есть . Поэтому число различных функций переменных равно числу различных двоичных векторов длины .
Определение. Переменная в функции называется несущественной (фиктивной), если при любых значениях остальных переменных.
Иначе говоря, переменная считается несущественной, если изменение её значения в любом наборе не изменяет значения функции. В этом случае функция по существу зависит от переменной, то есть представляет собой некоторую функцию от переменной. Говорят, что функция получена из функции удалением фиктивной переменной или, наоборот, что функция получена из функции добавлением фиктивной переменной. Например, запись означает, что при любых значениях выполняется независимо от значения .
Практический смысл удаления фиктивных переменных очевиден, поскольку они не влияют на значение функции и являются с этой точки зрения лишними. Однако иногда бывает полезно вводить фиктивные переменные. Благодаря такому введению можно всякую функцию переменных сделать функцией любого большего числа переменных. Поэтому любую конечную совокупность функций можно считать зависящей от одного и того же множества переменных (которое является объединением множеств переменных всех взятых функций).
- Конспект лекций по дисциплине “Дискретная математика”
- Санкт Петербург Содержание.
- Раздел I. Множества, функции, отношения. Лекция № 1. Множества и операции над ними.
- 1. Основные понятия теории множеств.
- 2. Операции над множествами и их свойства.
- 3. Векторы и прямые произведения.
- Лекция № 2. Соответствия и функции.
- Соответствия.
- Отображения и функции.
- Лекция № 3. Отношения и их свойства.
- Основные понятия и определения.
- Свойства отношений.
- Лекция № 4. Основные виды отношений.
- Отношения эквивалентности.
- Отношения порядка.
- Лекция № 4. Пересчёт.
- Раздел II. Введение в общую алгебру. Лекция № 6. Элементы общей алгебры.
- 1. Свойства бинарных алгебраических операций.
- 2. Алгебраические структуры.
- Гомоморфизм и изоморфизм.
- Лекция № 7. Различные виды алгебраических структур.
- Полугруппы.
- Группы.
- Поля и кольца.
- Раздел III. Введение в логику. Лекция № 8. Элементы математической логики.
- Булевы функции.
- Лекция № 9. Логические функции.
- Функции алгебры логики.
- Примеры логических функций.
- Суперпозиции и формулы.
- Лекция № 10. Булевы алгебры.
- Разложение функций по переменным. Совершенная дизъюнктивная нормальная форма.
- Булева алгебра функций.
- Эквивалентные преобразования.
- Лекция № 11. Булевы алгебры и теория множеств.
- Двойственность.
- Булева алгебра и теория множеств.
- Днф, интервалы и покрытия.
- Лекция № 12. Полнота и замкнутость.
- Функционально полные системы.
- Алгебра Жегалкина и линейные функции.
- Замкнутые классы. Монотонные функции.
- Теоремы о функциональной полноте.
- Лекция № 13. Язык логики предикатов.
- Предикаты.
- Кванторы.
- Истинные формулы и эквивалентные соотношения.
- Доказательства в логике предикатов.
- Лекция № 14. Комбинаторика.
- Правила суммы и произведения.
- Размещения.
- Перестановки.
- Сочетания. Бином Ньютона.
- Раздел IV. Теория графов. Лекция № 15. Графы: основные понятия и операции.
- Графы, их вершины, рёбра и дуги. Изображение графов.
- Матрица инцидентности и список рёбер. Матрица смежности графа.
- Идентификация графов, заданных своими представлениями.
- Лекция № 16. Маршруты, цепи и циклы.
- Основные определения.
- Связные компоненты графов.
- Расстояния. Диаметр, радиус и центр графа. Протяжённости.
- Эйлеровы графы.
- Лекция № 17. Некоторые классы графов и их частей.
- Деревья.
- Ориентированные графы.
- Графы с помеченными вершинами и рёбрами.
- Лекция № 18. Теория алгоритмов Понятие алгоритма
- 1.2.1. Основные требования к алгоритмам
- 1.2.2. Машина Тьюринга
- Универсальная машина Тьюринга
- 1.2.3. Тезис Тьюринга
- 1.3. Граф машина
- 1.3.1. Модель данных
- 1.3.2. Построение моделей алгоритмов в системе graph
- 2. Сложность алгоритмов
- 2.1.Временная и пространственная сложность алгоритма. Классы dtime и dspace
- 2.2. Классы сложности
- 2.2.1. Полиномиальность и эффективность
- 2.2.2. Алгоритмическая сводимость задач
- 3. Алгоритмы и их сложность
- 3.1. Представление абстрактных объектов (последовательностей)
- 3.1.1. Смежное представление последовательностей
- 3.1.2. Связанное представление последовательностей
- Список вопросов для подготовки к экзамену по дисциплине "дискретная математика"