Алгебраические системы
Общая алгебра изучает алгебраические системы. Любая такая система определяется
одним или несколькими базовыми множествами элементов произвольной природы; это могут быть числа, векторы, матрицы, функции (например, многочлены) и т.д.;
набором алгебраических операций с этими элементами; результатом выполнения операции с какими-то элементами-участниками является новый элемент; элементы-участники называются операндами.
Каждая операция характеризуется количеством операндов, участвующих в ней. Для большинства операций это количество равно двум, такие операции называются бинарными или двухместными, однако встречаются унарные или одноместные операции, а также тернарные или трехместные, операции с количеством операндов больше трех встречается редко.
Возможны ситуации, когда та или иная операция не определена (не выполнима) при некоторых значениях операндов, это зависит от согласованности операции с базовым множеством. Такие операции называются частичными.
Если операция выполнима при любых значениях операндов из некоторого множества и результат операции всякий раз также принадлежит этому множеству, говорят, что множество замкнуто относительно этой операции, в противном случае множество незамкнуто относительно операции. Так, множество четных чисел замкнуто относительно сложения и умножения, множество нечетных чисел замкнуто относительно умножения, но незамкнуто относительно сложения.
Рассмотрим примеры алгебраических систем.
-
Содержание
- Элементы общей алгебры
- Алгебраические системы
- Арифметика
- Целочисленное деление
- Алгебра матриц
- Алгебра многочленов
- Векторная алгебра
- Алгебра логики
- Арифметика вычетов по модулю n
- Алгебра множеств
- Операции с нефиксированным числом операндов
- Свойства алгебраических операций
- Коммутативность
- Нейтральный элемент
- Симметричный элемент
- Ассоциативность
- Вычисления в полях вычетов