26. Часовий ряд в загальному вигляді. Поняття тренду, сезонної, циклічної та випадкової компоненти. Основні етапи аналізу числових рядів.
Послідовність спостережень одного показника (ознаки), упорядкована залежно від послідовно зростаючих або спадних значень другого показника (ознаки) є одновимірним рядом динаміки.
Якщо ознакою, за якою відбувається впорядкування ряду, є час, то такий динамічний ряд має назву часового ряду.
в найзагальнішому випадку часовий ряд y1, y2, y3, … yn економічної динаміки можна розкласти на чотири структурних елементи:
тренд Qt;
сезонний компонент St;
циклічну складову Zt;
випадкову складову Ut.
Таким чином, під трендом розумітимемо стійку систематичну зміну процесу протягом довготривалого періоду, тобто тренд визначає зміни, які зумовлюються тривалими постійно діючими факторами, що визначають основну тенденцію часових рядів.
Якщо вони мають строго періодичний або близький до нього характер і завершуються протягом одного часового періоду, то вони мають назву сезонних коливань.
У тих випадках, коли період коливання становить кілька часових періодів (наприклад, років), говорять, що в часовому ряді є довготривалий циклічний компонент. Тренд, сезонний і циклічний компоненти мають назву регулярних, або систематичних компонентів часового ряду. Складову часового ряду, що залишається після вилучення з нього регулярних компонентів, раніше названо випадковою, або нерегулярною.
Вона є обов’язковою складовою часового ряду в економіці, бо випадкові фактори неминуче притаманні будь-якому економічному явищу.
Якщо систематичні регулярні компоненти часового ряду визначені правильно, то після їх вилучення залишковий компонент має бути випадковим компонентом часового ряду, тобто повинен мати такі властивості:
характеризуватись випадковістю коливань рівнів залишкової послідовності (або простіше — залишків);
відповідністю розподілу ймовірностей рівнів випадкового компонента нормальному закону розподілу;
рівністю нулю математичного сподівання;
незалежністю значень рівнів залишків, тобто відсутністю суттєвої між ними автокореляції.
У більшості випадків фактичний рівень часового ряду наводиться як сума або добуток трендової, сезонного, циклічного й випадкового компонентів:
Yt = Qt + St + Zt + Ut або Yt = Qt St Zt Ut.
Модель, де часовий ряд наводиться як сума перелічених компонентів, має назву адитивної моделі. Модель, де часовий ряд подається через добуток складових компонентів, тобто Yt = = Qt St Zt Ut , має назву мультиплікативної моделі.
27.Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
Під задачею лінійного програмування в загальному вигляді розуміють задачу знаходження мінімуму (максимуму) лінійної функції від змінних на множині розв’язків системи лінійних нерівностей або лінійних рівнянь. Розглянемо це на конкретному прикладі. Загальна задача лінійного програмування подається у вигляді:за умов:
( 3.2)
…, .
Отже, потрібно знайти значення змінних які задовольняють умови (3.2) і (3.3), і цільова функція (3.1) набуває екстремального (максимального чи мінімального) значення.
- 4. Параметри моделі парної лінійної регресії, їх сутність та оцінювання.
- 5 Коефіцієнт детермінації та кореляції для моделі парної регресії. Перевірка суттєвості коефіцієнта детермінації за допомогою f-критерію.
- 6 Перевірка суттєвості оцінок параметрів на основі t-критерію.
- 7.Передумови застосування методу найменших квадратів.
- 8.Метод найменших квадратів (мнк). Система нормальних рівнянь.
- 12.Перевірка достовірності оцінок параметрів за допомогою t -критерію.
- 13.Поняття фіктивних змінних.
- 14.Врахування якісних факторів в лінійних економетричних моделях за допомогою фіктивних змінних.
- 15.Суть та наслідки мультиколінеарності.
- 16Тестування наявності мультиколінеарності в моделі. Алгоритм Фаррара-Глобера.
- 17.Поняття про гомо- та гетероскедастичність залишків.
- 18.Тест Гольдфельда-Квандта. Послідовність його виконання.
- 19. Алгоритм теста Глейсера.
- 20Перевірка наявності гетероскедастичності залишків на основі теста коефіцієнта рангової кореляції Спірмена.
- 21. Узагальнений метод найменших квадратів для моделі з гетероскедастичністю залишків.
- 22.Суть та наслідки автокореляції стохастичної складової.
- 23.Алгоритм Дарбіна-Уотсона для виявлення автокореляції залишків першого порядку.
- 24.Узагальнений метод найменших квадратів для знаходження оцінок параметрів моделі з автокорельованими залишками.
- 25.Поняття часового лагу. Моделі з часовим лагом незалежних змінних.
- 26. Часовий ряд в загальному вигляді. Поняття тренду, сезонної, циклічної та випадкової компоненти. Основні етапи аналізу числових рядів.
- 28.Модель задачі лінійного програмування в розгорнутому і скороченому вигляді, а також в матричній і векторній формах.
- 29. Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- 31.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- 33.Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- 34.Економічний зміст двоїстої задачі й двоїстих оцінок.
- 35.Перша теорема двоїстості та її економічна інтерпретація.
- 38.Постановка транспортної задачі. Поняття відкритої та закритої моделі.
- 41. Побудова опорного плану транспортної задачі: метод подвійної переваги.
- 42. Побудова опорного плану транспортної задачі: метод апроксимації Фогеля.
- 43.Побудова оптимального плану транспортної задачі: метод потенціалів
- 44.Аналіз розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції.
- 45.Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- 46.Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- 47.Геометрична інтерпретація задачі цілочислового програмування.
- 48.Метод Гоморі.
- 49Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- 50.Графічний метод розв’язування задач нелінійного програмування.
- 51.Метод множників Лагранжа. Теорема Лагранжа. Алгоритм розв’язування задачі на безумовний екстремум.
- 52.Основні поняття теорії ігор.
- 53.Поняття інформаційної ситуації.
- 54.Основні принципи класифікації інформаційних ситуацій. Навести приклади та дати пояснення.
- 55.Матриця ризику, її побудова. Сутність її елементів. Навести приклади.
- 56.Сутність критерію Севіджа. Навести приклади.
- 57. Пояснити, в чому полягає суть критерію Байєса. Навести приклади.
- 61.Сутність критерію Вальда. Навести приклади.
- 62.Дайте означення економічного ризику. Поясніть його сутність.
- 63.Наведіть приклади економічних рішень, обтяжених ризиком. Ідентифікуйте ризики, здійсніть їх якісний аналіз.
- 64. Поясніть основні причини виникнення економічного ризику.
- 65.Пояснити сутність таких понять як: джерело, об`єкт, суб`єкт економічного ризику.
- 66.Загальні засади класифікації ризику.
- 67.Зовнішні та внутрішні чинники ризику. Навести приклади.
- 68.Фінансовий ризик та його особливості.
- 69.Поняття інгредієнту економічного показника.
- 70.Ризик як величина очікуваної невдачі. Навести приклади.
- 71.Які ви знаєте показники кількісної оцінки ризику в абсолютному вираженні? Навести приклади.
- 72.Навести приклади показників ступеня ризику у відносному вираженні.
- 73.Пояснити, що означають терміни: “допустимий”, “критичний”, “катастрофічний” ризик, навести приклади кількісного визначення цих величин.