Алгебра Ревизия История
Развитие научной мысли двигалось так, что постепенно поляризация объектов мышления в математике увеличивалась. Сначала ввели «отрицательные» числа. Это тут же чётко выделило «абсолютные» числа как не поляризованное. Фактически абсолютные и натуральные числа это одно и то же, то есть не поляризованные числа. К сожалению, «абсолютные» числа склеили с «положительными». Это стало тормозить развитие полярных отношений.
В арифметике появляется три полярности +, -, 0, но в «умножении» ещё две: +, —, так, что а) (+)*(+) = +, б) (+)*(—) = —, в) (—)*(+) = —, г) (—)*(—) = +.
Алгебра добавляет деление и тем самым, третью полярность в «умножении». Из а/а = 1 ещё не следует поляризации, но а/-а = -1, уже появляется +, —, е, Здесь элемент е вытесняет предыдущий +. Если в алгебре «действительных чисел» (+)*(+) = +, то теперь в теории групп (е)*(е) = е. Дали название е как «единица».
Появилась необходимость ввести термин «идемпотентный элемент». Вместе с арифметикой будет: 0 + 0 = 0, (+)*(+) = +, (е)*(е) = е. Заметили ли математики, что деление и появление «единицы» увеличило число полярностей с двух до трёх? Нет.
Следующим ходом к арифметическим трём полярностям +, —, 0 добавляются «мнимые» числа, как следствие необходимости извлекать «корень квадратный» из отрицательно поляризованных чисел. От неожиданности новые числа назвали «мнимыми». Как и деление, извлечение корня «растягивает» область полярных чисел. Теперь появляются «кватернионы». Четыре полярности? j, k, + составляют четырёхполярное пространство.
У.Гамильтон изобретает «кватернионы» путем введения в суперпозицию трёх изоморфных систем «комплексных» чисел, но с огромным противоречием в самой системе отношений. Напрасно математики спасали эту систему, так как в ней доказвается, что + = —,? = —? j = —j, k = — k. Никакая альтернативность умножения эту систему не спасёт. Иначе, можно изобретать всё, что хочешь, нарушая принцип математики — аксиоматичность и чёткость доказательств.
Три фактора сковали творческую мысль математиков: а) арифметика, которая напрямую связана с действительностью (поэтому числа четырёхполярности назвали «мнимыми»); б) невнимательность, поэтому не заметили даже то, что деление и извлечение корня увеличивает число полярностей; в) неаккуратность, по причине которой, законы, полученные в найденном варианте отношений, тут же подражанием распространялись во все области математики.
Натуральные числа это не «положительные» числа. «Положительное» число поляризовано в совокупности с «отрицательным». Поэтому, безотносительные 15 лошадей могут поляризоваться так, что 10 лошадей «моих», а 5 лошадей «чужие». Если мы производим операцию 15 — 5 = + 10, так как +10 и — 5 уже поляризованные числа. Безотносительные числа лучше называть «натуральными».
Пока в арифметике безотносительное констатирование факта наблюдений (15 лошадей, три озера, двадцать журавлей), то там нет алгебры. Но уже в арифметике начинается вычитание, то есть тут же числа поляризуются. Алгебра имеет дело не с натуральными, а с поляризованными объектами и числами. Натуральные числа тут безынтересные.
- Василий Васильевич Ленский Книга теорем 2 Рождение поляризованных объектов в области абстракций ума
- Обыденное мышление
- Диалектика
- Многополярность
- Кризис политики
- Побуждения
- Кризис интеллекта
- Многополярность
- Виды ума Ориентация в мастерстве ума
- Базис ума
- Психо-эмоциональная база ума
- Ориентация, существование
- Опыт видов ума
- Кризис интеллекта Куча хлама
- Осмысление
- Здоровый ум
- Кризис науки
- Кризис межчеловеческих отношений
- Кризис политики
- Оздоровление
- Просветление
- Снятие формы
- Предвестие
- Виды ума Не будьте самоуверенными
- Ум цивилизации Запада
- Проблемы ума
- Законы замкнутости ума
- Виды формирующего ума
- Многополярность Материал из Многополярность/Виды ума
- История формирующих видов ума
- Классификация
- «Похудение ума»
- Обогащение формирующего ума
- Локальность
- Матрица
- Мастер ума
- Третий Путь. Новый Человек
- Абсолют. Бесконечность. Бог
- Конформное отображение
- Ум татхагаты Назидание
- Алмазная Сутра
- Ум татхагаты
- Осмысленное сознание
- Однополярный ум
- Освобождённый ум
- Линейный двухполярный ум
- Ум мудрости
- Диалектика. Трёхполярный ум Законы отношений Рождение трёхполярных изречений
- Упражнения в трёхполярных высказываниях
- Диалектика
- Четырёхполярный ум
- Пятиполярный ум Что бы это могло быть?
- Этика отношений Как бы вы себя повели?
- Слава и позор мудрецов
- Культура общения
- С чего начать?
- База религий Различать!
- Содержание религий
- Разновидности религий
- Поляризации
- Обыденное мышление
- Формальное мышление
- Формализация предметного мира
- Поляризация сознания и эмоций
- Искусство База
- Направленность искусства
- Алгебра Ревизия История
- Великая ли Великая теорема Ферма?
- Алгебра полярностей
- Прикладные алгебры
- Интуиция к прорыву
- Слова — коварный инструмент
- Законы и потенция
- Многополярные логики
- Политика Политика линейного ума
- Виды политического ума
- Практика
- Математика Описание
- Многополярность
- Поляризация Натуральные и поляризованные объекты
- Действительные высказывания
- Поляризация объектов мышления
- Пространства качеств Отношения между полярностями
- Плоскостная поляризация
- Объёмная поляризация
- Пространственная поляризация
- Локальность
- Система аксиом
- Аксиома шестая.
- Единица
- Единица
- Изоморфизм
- Однополярное пространство Плоскостная локальность
- Объёмная локализация
- Действительные числа. Двухполярность Материал из Многополярность/Математика Действительные числа
- Двухполярность Плоскостная поляризация
- Теорема 1.
- Объёмная поляризация
- Теорема 7.
- Теорема 8.
- Теорема 9.
- Трёхполярная поляризация История
- Теорема 3.
- История
- Объёмная поляризация
- Теорема 11.
- Теорема 12.
- Теорема 13.
- Теорема 14.
- Янтра локи 3
- Комплексные числа. Четырёхполярность Комплексные числа
- Четырёхполярность Плоскостная четырёхполярность
- Теорема 4.
- Объёмная четырёхполярность
- Алгоритмическое нахождение законов отношения
- Янтра четырёхполярного пространства
- Пятиполярное пространство
- Объёмная пятиполярность Теорема 16.
- Янтра пятиполярного пространства.
- Шестиполярное пространство Янтра шестиполярного пространства
- Семиполярное пространство Янтра семиполярного пространства
- Восьмиполярное пространство Янтра восьмиполярного пространства
- Пространство любого числа полярностей Плоскостная лока n — полярностей
- Суперпозиция двухполярных пространств Суперпозиционные локи
- Двухполярная лока 2
- Двухполярная лока 3
- Двухполярная лока 4
- Двухполярная лока 5
- Двухполярная лока 6
- Двухполярная лока 7
- Двухполярная лока n
- Суперпозиция трёхполярных пространств
- Трёхполярная лока 2
- Трёхполярная лока 3
- Кватернионы. Суперпозиция четырёхполярных пространств История
- Кватернионы
- Противоречие
- Корректные суперпозиции