logo
Василий Ленский, Тренировка Интеллекта, Цикл Кл

Двухполярная лока 4

Возьмём три двухполярных локи так, что в первой будет (А)*(А) = 0, во второй — (В)*(В) = 0, в третей — (С)*(С) = 0 так, что (А)*(0) = А, (В)*(0) = В, (С)*(0) = С, (0)*(0) = 0. В этой суперпозиционной локе будет четыре объекта: А, В, С, 0.

Теорема 17. В суперпозиционной локе, состоящей из трёх двухполярных лок, законы отношений между объектами будут:

а) (А)*(А) = (В)*(В) = (С)*(С) = 0.

б) (А)*(В) = С; (А)*(С) = В, (В)*(С) = А.

в) (А)*(В)*(С) = 0.

Доказательство.

1. (А)*(А) = (В)*(В) = (С)*(С) = 0 по условию.

2. Для (А)*(В) в соответствие можно поставить только С, так как в ином случае мы получим объекты А, В тождественные единице. Если же поставить 0, то это будет противоречить условию, где (А)*(А) и (В)*(В) соответствуют 0.

3. То же самое для (А)*(С) = В, и для (В)*(С) = А.

4. Для взаимодействия (А)*(В)*(С) нельзя поставить в соответствие А, или В, или С, так как эти объекты станут тождественными единице. Остаётся объект 0, который не создаёт противоречия в системе отношений.