Янтра четырёхполярного пространства
Янтра локи 4
1. A B C
2. B 0 B
3. C B A
4. 0 0 0
По «арифметическим» правилам (А)*(А) = В, то есть 1 + 1 = 2. Возьмём, к примеру, (В)*(С). Здесь В занимает вторую, а С третью строку. Значит, 2 + 3 = 5. Пятым будет А (если строки продолжать). Можно взять первую строку там, где С стоит на первом месте в столбце, В — на втором. Значит, 1 + 2 = 3, то есть (В)*(С) = А. Теперь берём произвольное взаимодействие (А)*(В)*(С)*(А)*(В). Применяя правило янтр, получим 1 + 2 + 3 + 1 + 2 = 9. Девятым объектом в продолжение столбца будет А. Следовательно, (А)*(В)*(С)*(А)*(В) = А. Это же можно было выполнить поэтапно шаг за шагом. (А)*(В) = С, по четвёртому столбцу (С)*(С) = В, (В)*(А) = С, наконец, (С)*(В) = А. Янтры удобны тем, что можно, двигаясь по столбцам, найти просто любое взаимодействие. Например, для (В)*(С)*(В) будет по четвёртому столбцу (В)*(С) = А и далее по второму столбцу (А)*(В) = С. Итак, (В)*(С)*(В) = С.
Пример. Примером локи 4 можно взять «комплексные числа». Исторически «корень квадратный» из полярности «минус» был не определён, так как пользовались только двухполярными отношениями. Вместо увеличения числа полярностей в локе, назвали количества подобных полярностей «мнимыми числами» и обозначили (?). Фактически «расщепление» локи 2 и есть четырехполярная лока.
Янтра «комплексных чисел» 1. i — i
2. - + —
3. -i — i
4. + + +
Согласно правилам Янтры (i)*(i) = —, (i)*(-) = — i, (i)*(-i) = +, (-i)*(-i) = —, (-)*(-) = +. Естественно, что при «расщеплении» локи 2 появилось четыре полярности. Кстати, эта приверженность к «действительным» числам и не способность заметить поляризацию стала результатом того, что была пропущена трёхполярная лока. Кроме того, в четырёхполярной локе появилась некоторая особенность в сравнении с двухполярной локой. В двухполярной локе (х + у)*(х — у) = х^2 — у^2, а в четырёхполярной (х + iу)*(х — iу) = х^2 + у^2. Последние можно изобразить геометрически и даёт повод для геометрического изображения комплексных чисел. В дальнейшем эта слепая приверженность толкнет математиков на изобретение ещё расщеплённых лок, кратным исходной двухполярной локе. Так появились октавы, то есть восьмиполярная лока. Можно было расщеплять до шестнадцати, тридцати двух, шестидесяти четырёх полярностей, но это слепое изыскание крайне скучное и бесперспективное. Эту немощь математической мысли мы видим и в алгебре «комплексных чисел», так как алгебра, это взаимодействие поляризованных лок с разной интенсивностью связей.
- Василий Васильевич Ленский Книга теорем 2 Рождение поляризованных объектов в области абстракций ума
- Обыденное мышление
- Диалектика
- Многополярность
- Кризис политики
- Побуждения
- Кризис интеллекта
- Многополярность
- Виды ума Ориентация в мастерстве ума
- Базис ума
- Психо-эмоциональная база ума
- Ориентация, существование
- Опыт видов ума
- Кризис интеллекта Куча хлама
- Осмысление
- Здоровый ум
- Кризис науки
- Кризис межчеловеческих отношений
- Кризис политики
- Оздоровление
- Просветление
- Снятие формы
- Предвестие
- Виды ума Не будьте самоуверенными
- Ум цивилизации Запада
- Проблемы ума
- Законы замкнутости ума
- Виды формирующего ума
- Многополярность Материал из Многополярность/Виды ума
- История формирующих видов ума
- Классификация
- «Похудение ума»
- Обогащение формирующего ума
- Локальность
- Матрица
- Мастер ума
- Третий Путь. Новый Человек
- Абсолют. Бесконечность. Бог
- Конформное отображение
- Ум татхагаты Назидание
- Алмазная Сутра
- Ум татхагаты
- Осмысленное сознание
- Однополярный ум
- Освобождённый ум
- Линейный двухполярный ум
- Ум мудрости
- Диалектика. Трёхполярный ум Законы отношений Рождение трёхполярных изречений
- Упражнения в трёхполярных высказываниях
- Диалектика
- Четырёхполярный ум
- Пятиполярный ум Что бы это могло быть?
- Этика отношений Как бы вы себя повели?
- Слава и позор мудрецов
- Культура общения
- С чего начать?
- База религий Различать!
- Содержание религий
- Разновидности религий
- Поляризации
- Обыденное мышление
- Формальное мышление
- Формализация предметного мира
- Поляризация сознания и эмоций
- Искусство База
- Направленность искусства
- Алгебра Ревизия История
- Великая ли Великая теорема Ферма?
- Алгебра полярностей
- Прикладные алгебры
- Интуиция к прорыву
- Слова — коварный инструмент
- Законы и потенция
- Многополярные логики
- Политика Политика линейного ума
- Виды политического ума
- Практика
- Математика Описание
- Многополярность
- Поляризация Натуральные и поляризованные объекты
- Действительные высказывания
- Поляризация объектов мышления
- Пространства качеств Отношения между полярностями
- Плоскостная поляризация
- Объёмная поляризация
- Пространственная поляризация
- Локальность
- Система аксиом
- Аксиома шестая.
- Единица
- Единица
- Изоморфизм
- Однополярное пространство Плоскостная локальность
- Объёмная локализация
- Действительные числа. Двухполярность Материал из Многополярность/Математика Действительные числа
- Двухполярность Плоскостная поляризация
- Теорема 1.
- Объёмная поляризация
- Теорема 7.
- Теорема 8.
- Теорема 9.
- Трёхполярная поляризация История
- Теорема 3.
- История
- Объёмная поляризация
- Теорема 11.
- Теорема 12.
- Теорема 13.
- Теорема 14.
- Янтра локи 3
- Комплексные числа. Четырёхполярность Комплексные числа
- Четырёхполярность Плоскостная четырёхполярность
- Теорема 4.
- Объёмная четырёхполярность
- Алгоритмическое нахождение законов отношения
- Янтра четырёхполярного пространства
- Пятиполярное пространство
- Объёмная пятиполярность Теорема 16.
- Янтра пятиполярного пространства.
- Шестиполярное пространство Янтра шестиполярного пространства
- Семиполярное пространство Янтра семиполярного пространства
- Восьмиполярное пространство Янтра восьмиполярного пространства
- Пространство любого числа полярностей Плоскостная лока n — полярностей
- Суперпозиция двухполярных пространств Суперпозиционные локи
- Двухполярная лока 2
- Двухполярная лока 3
- Двухполярная лока 4
- Двухполярная лока 5
- Двухполярная лока 6
- Двухполярная лока 7
- Двухполярная лока n
- Суперпозиция трёхполярных пространств
- Трёхполярная лока 2
- Трёхполярная лока 3
- Кватернионы. Суперпозиция четырёхполярных пространств История
- Кватернионы
- Противоречие
- Корректные суперпозиции