logo search
Василий Ленский, Тренировка Интеллекта, Цикл Кл

Великая ли Великая теорема Ферма?

Великая теорема Ферма (также Последняя Теорема Ферма) утверждает что «для любого целого числа n > 2 уравнение не имеет положительных целых решений a, b, c».

Это, наверное, самая знаменитая теорема во всей математике. Теорема была сформулирована Пьером Ферма в 1637 на полях книги «Арифметика» Диофанта с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы его можно было здесь поместить. История Великой теоремы Ферма неразрывно связана с историей математики, так как затрагивает все основные темы теории чисел.

И всё же, великая ли Великая теорема?

Когда Пифагор доказывал свою теорему о прямоугольном треугольнике в котором где a, b — катеты, c — гипотенуза, то он брал натуральные числа площади. Другое дело — алгебра. Например, для нахождения катета придётся применить отрицательные числа. Извлечение корня квадратного даст нам два катета «положительный» и «отрицательный». Гипотенуза тоже может быть «положительной» и «отрицательной». Это означает, что в пространстве находятся не один, а два треугольника, то есть треугольник «расщепился». При доказательствах теоремы Ферма каждый математик использовал алгебру поляризованных чисел, а не натуральные числа. Подгонка? Не исключено. Скорее, неосмысленное оперирование. В итоге теорема Пифагора к алгебрам не имеет отношения, так как математики упражнялись не с натуральными величинами площадей, а с поляризованными числами.

Ну, а, если алгебра будет не двухполярной? Тогда мы получим не два треугольника со сторонами + и —, как в двухполярных преобразованиях имели математики 369 лет, а три треугольника.

1. Возьмём трёхполярное пространство, то есть «расщепим» треугольник не на два, как это делают математики, а на три. Тогда, вместо полярностей +, — обозначим три полярности: +,? j. В такой алгебре, а так же (?)*(j) = +.

2. Проведём такие математические преобразования, чтобы охватить несколько разделов математики (дабы не тратить впустую время на каждый раздел).

а) К тригонометрическим функциям: (cos x +sin x)*(cos x +? sin x)*(cos x +j sin x),

b) К показательной функции:.

с) В связи этих функций:

,

,

,

d) Окончательно из a), b), c) получим.

е) Поскольку cos x = b/c, sin x = а/c, где a, b — катеты, с — гипотенуза, то заменим формулу d).

f) В итоге получим:.

3. Аналогично легко доказать для алгебр с нечётным числом полярностей.

Это опровергает «Великую» теорему Ферма.

Иными словами, теорема Ферма остаётся Великой лишь в частном случае алгебры двухполярных отношений. А, так как, полярных пространств очень много, то Великое превращается в малое и частный случай.

Анализ

По сути, алгебра это взаимодействие лок с разными видами связей. Например, +7–7 = 0 это фрагмент плоскостной локи 3. Трёхполярное пространство вошло в алгебру «действительных чисел» как составная часть. В то же время при делении +7: -7 = -1 это фрагмент локи 3 объёмной поляризации.

Однако в алгебре «действительных чисел» используется сочетание: трёхполярное пространство в «сложении» такое, что +а — а = 0, и двухполярное — в «умножении» такое, что а) (+)*(+) = +, б) (+)*(-) = —, в) (-)*(+) = —, г) (-)*(-) = +

Отсюда алгебра таких лок будет, например, (а — в)*(-с) = — аc + вс. Конечно, закон дистрибутивности выведен на базе арифметического опыта и обобщен в алгебре.

Имея не внимательный опыт предшественников, к видам взаимодействия подойдём аккуратно. Например, из а + в = с, совершая перенос через знак равенства, знак числа меняют на обратный, то есть а = в — с. Это правило не правомерно в иных локах.

Внимание! Особо напомню, что всякий раз мы имеем дело с натуральными числами и объектами. Поэтому названия «действительные числа», «комплексные числа» пусть вас не смущают. Так математики назвали двухполярные и четырёхполярные натуральные числа. Никакой «мнимости» в таких числах нет. Есть поляризованность чисел и объектов, относящая к тому или иному пространству, с тем или иным числом полярностей.