Принцип практической невозможности маловероятных событий
Особую роль в статистических исследованиях играют практически невозможные (и сопутствующие им практически достоверные) события. Ни один прогноз в области случайных явлений не является и не может являться полностью достоверным; он может быть только практически достоверным, т. е. осуществляться с очень большой вероятностью. В основе применения всех выводов и рекомендаций, добываемых с помощью теории вероятностей, лежит принцип практической уверенности, который можно сформулировать следующим образом:
Если вероятность события А в данном опыте весьма мала, то (при однократном выполнении опыта) можно вести себя так, как будто событие А вообще невозможно, т. е. не рассчитывать на его появление.
В повседневной жизни мы постоянно (хотя и бессознательно) пользуемся этим принципом. Например, выезжая куда-то на поезде, мы не рассчитываем на возможность погибнуть в дорожной катастрофе, хотя некоторая (весьма малая) вероятность этого события все же имеется.
Насколько маленькой должна быть вероятность события, чтобы это событие можно было считать практически невозможным? Ответ на этот вопрос выходит за рамки математической теории и в каждом отдельном случае решается из практических соображений в зависимости от сферы приложений полученных результатов. Чем более опасными являются последствия возможной ошибки предсказания, тем ближе к нулю должна быть вероятность события, чтобы его считать практически невозможным. Например, заложенная в проекте строительства атомной станции, вероятность 0,01 того, что здание не разрушится при природных катаклизмах, считается абсолютно недопустимой, но такая же вероятность ошибки при прогнозировании погоды может считаться приемлемой. Остаточно малую вероятность, при которой (применительно к данной определенной задаче) событие можно считать практически невозможным, называют уровнем значимости. На практике уровень значимости обычно заключен между 0,01 и 0,05.
- Введение
- Литература
- Элементы теории вероятностей
- Случайное событие и вероятность
- Определение вероятности
- Принцип практической невозможности маловероятных событий
- Формулы комбинаторики
- Условная вероятность
- Независимые события
- Свойства вероятности
- Формула полной вероятности
- Формула Байеса
- Случайная величина
- Свойства математического ожидания
- Дисперсия дискретной с.В.
- Свойства дисперсии
- Закон больших чисел.
- Функция распределения случайной величины
- Свойства функции распределения
- Односторонние и двухсторонние значения вероятностей
- Нормальное распределение
- Взаимосвязи случайных величин Парная корреляция
- Элементы математической статистики
- Генеральная и выборочная совокупность
- Основные шкалы измерений
- Точечные оценки параметров распределения
- Проверка статистических гипотез
- Исследование зависимости между двумя характеристиками
- Лабораторная работа Задание 1. Нахождение выборочных характеристик
- Задача 1.1.
- Задача 1.2.
- Задача 1.3.
- Задача 1.4.
- Задача 1.5.
- Задача 1.6.
- Задание 2 Построение гистограммы выборки
- Задача 2.1
- Задание 3 Проверка статистических гипотез
- Одновыборочный критерий Стьюдента
- Двухвыборочный критерий Стьюдента
- Критерий согласия хи-квадрат
- Задание 4. Интервальные оценки
- Задача 4.1.
- Задача 4.2.
- Анализ значения коэффициента корреляции
- Построение линий регрессии
- Преподавателю и студенту было предложено расположить 15 профессий в порядке их восстребованности на рынке. В результате получилась следующая таблица:
- Оглавление