Условная вероятность
У словной вероятностью события A при условии, что произошло событие B, называется величина
Условную вероятность определяется лишь для событий B, вероятность которых не равна нулю.
Пример 1.14. Кубик подбрасывается один раз. Известно, что выпало более трех очков. Какова при этом вероятность того, что выпало четное число очков?
Решение: Обозначим через событие выпадения более 3 очков. Тогда . Событию (выпало четное число очков) благоприятствуют два из них: . Поэтому, .
Другое решение задачи получается с использованием формулы, определяющей условную вероятность. Мы хотим вычислить отношение числа исходов, благоприятствующих внутри (то есть благоприятствующих одновременно и ), к числу исходов, благоприятствующих .
Из вышесказанного следует, что . В общем виде, предыдущее соотношение выглядит следующим образом:
- Введение
- Литература
- Элементы теории вероятностей
- Случайное событие и вероятность
- Определение вероятности
- Принцип практической невозможности маловероятных событий
- Формулы комбинаторики
- Условная вероятность
- Независимые события
- Свойства вероятности
- Формула полной вероятности
- Формула Байеса
- Случайная величина
- Свойства математического ожидания
- Дисперсия дискретной с.В.
- Свойства дисперсии
- Закон больших чисел.
- Функция распределения случайной величины
- Свойства функции распределения
- Односторонние и двухсторонние значения вероятностей
- Нормальное распределение
- Взаимосвязи случайных величин Парная корреляция
- Элементы математической статистики
- Генеральная и выборочная совокупность
- Основные шкалы измерений
- Точечные оценки параметров распределения
- Проверка статистических гипотез
- Исследование зависимости между двумя характеристиками
- Лабораторная работа Задание 1. Нахождение выборочных характеристик
- Задача 1.1.
- Задача 1.2.
- Задача 1.3.
- Задача 1.4.
- Задача 1.5.
- Задача 1.6.
- Задание 2 Построение гистограммы выборки
- Задача 2.1
- Задание 3 Проверка статистических гипотез
- Одновыборочный критерий Стьюдента
- Двухвыборочный критерий Стьюдента
- Критерий согласия хи-квадрат
- Задание 4. Интервальные оценки
- Задача 4.1.
- Задача 4.2.
- Анализ значения коэффициента корреляции
- Построение линий регрессии
- Преподавателю и студенту было предложено расположить 15 профессий в порядке их восстребованности на рынке. В результате получилась следующая таблица:
- Оглавление