Эйлеровы графы.
Определение. Цепь (цикл) в графе G называется Эйлеровым, если она проходит по одному разу через каждое ребро графа G.
Теорема 15.1. Для того, чтобы связный граф G обладал Эйлеровым циклом, необходимо и достаточно, чтобы степени его вершин были четными.
Рисунок 3
а) б)
Задача, которая привела к появлению понятия Эйлерова цикла, широко известна в истории математики. Это так называемая задача о кенигсбергских мостах. Расположение семи мостов в городе Кенигсберге в начале XVIII века приведено на рисунке 3а. Требуется обойти город, пройдя через каждый мост ровно один раз, и вернуться в исходную точку.
Можно представить описанную задачу следующим образом. Имеется связный неориентированный граф с четырьмя вершинами и семью рёбрами. Требуется выяснить, существует ли простой цикл, позволяющий обойти данный граф по маршруту, включающему в себя по одному разу каждое ребро графа.
Именно решение данной задачи привело Л. Эйлера к доказательству приведённой выше теоремы. Кстати, согласно ей, данная задача неразрешима, поскольку степени всех вершин графа нечётны.
Теорема 15.2. Для того, чтобы связный граф G обладал Эйлеровой цепью, необходимо и достаточно, чтобы он имел ровно две вершины нечетной степени.
По сути дела, теоремы 15.1 и 15.2 описывают условия, при которых можно построить геометрическую фигуру “не отрывая карандаша от бумаги”, одной сплошной линией. Только в первом случае начало и конец этой линии будут совпадать, а во втором случае они будут различны.
Определение. Цикл (цепь) в графе G называется Гамильтоновым, если он проходит через каждую вершину графа G ровно один раз.
Пример 1.
а)
- в графе есть и Эйлеров и Гамильтонов циклы
б)
- в графе есть Эйлеров цикл, но нет Гамильтонова
в)
- в графе есть гамильтонов, но нет Эйлерова цикла
г)
- в графе нет ни Эйлерова, ни Гамильтонова цикла
Граф G называется полным, если каждая его вершина является смежной со всеми остальными вершинами. В полном графе всегда существуют гамильтоновы циклы.
Также необходимым условием существования гамильтонова цикла является связность графа.
- Конспект лекций по дисциплине “Дискретная математика”
- Санкт Петербург Содержание.
- Раздел I. Множества, функции, отношения. Лекция № 1. Множества и операции над ними.
- 1. Основные понятия теории множеств.
- 2. Операции над множествами и их свойства.
- 3. Векторы и прямые произведения.
- Лекция № 2. Соответствия и функции.
- Соответствия.
- Отображения и функции.
- Лекция № 3. Отношения и их свойства.
- Основные понятия и определения.
- Свойства отношений.
- Лекция № 4. Основные виды отношений.
- Отношения эквивалентности.
- Отношения порядка.
- Лекция № 4. Пересчёт.
- Раздел II. Введение в общую алгебру. Лекция № 6. Элементы общей алгебры.
- 1. Свойства бинарных алгебраических операций.
- 2. Алгебраические структуры.
- Гомоморфизм и изоморфизм.
- Лекция № 7. Различные виды алгебраических структур.
- Полугруппы.
- Группы.
- Поля и кольца.
- Раздел III. Введение в логику. Лекция № 8. Элементы математической логики.
- Булевы функции.
- Лекция № 9. Логические функции.
- Функции алгебры логики.
- Примеры логических функций.
- Суперпозиции и формулы.
- Лекция № 10. Булевы алгебры.
- Разложение функций по переменным. Совершенная дизъюнктивная нормальная форма.
- Булева алгебра функций.
- Эквивалентные преобразования.
- Лекция № 11. Булевы алгебры и теория множеств.
- Двойственность.
- Булева алгебра и теория множеств.
- Днф, интервалы и покрытия.
- Лекция № 12. Полнота и замкнутость.
- Функционально полные системы.
- Алгебра Жегалкина и линейные функции.
- Замкнутые классы. Монотонные функции.
- Теоремы о функциональной полноте.
- Лекция № 13. Язык логики предикатов.
- Предикаты.
- Кванторы.
- Истинные формулы и эквивалентные соотношения.
- Доказательства в логике предикатов.
- Лекция № 14. Комбинаторика.
- Правила суммы и произведения.
- Размещения.
- Перестановки.
- Сочетания. Бином Ньютона.
- Раздел IV. Теория графов. Лекция № 15. Графы: основные понятия и операции.
- Графы, их вершины, рёбра и дуги. Изображение графов.
- Матрица инцидентности и список рёбер. Матрица смежности графа.
- Идентификация графов, заданных своими представлениями.
- Лекция № 16. Маршруты, цепи и циклы.
- Основные определения.
- Связные компоненты графов.
- Расстояния. Диаметр, радиус и центр графа. Протяжённости.
- Эйлеровы графы.
- Лекция № 17. Некоторые классы графов и их частей.
- Деревья.
- Ориентированные графы.
- Графы с помеченными вершинами и рёбрами.
- Лекция № 18. Теория алгоритмов Понятие алгоритма
- 1.2.1. Основные требования к алгоритмам
- 1.2.2. Машина Тьюринга
- Универсальная машина Тьюринга
- 1.2.3. Тезис Тьюринга
- 1.3. Граф машина
- 1.3.1. Модель данных
- 1.3.2. Построение моделей алгоритмов в системе graph
- 2. Сложность алгоритмов
- 2.1.Временная и пространственная сложность алгоритма. Классы dtime и dspace
- 2.2. Классы сложности
- 2.2.1. Полиномиальность и эффективность
- 2.2.2. Алгоритмическая сводимость задач
- 3. Алгоритмы и их сложность
- 3.1. Представление абстрактных объектов (последовательностей)
- 3.1.1. Смежное представление последовательностей
- 3.1.2. Связанное представление последовательностей
- Список вопросов для подготовки к экзамену по дисциплине "дискретная математика"