logo search
Конспект лекций Дискретная математика

Доказательства в логике предикатов.

Метод доказательства формул, содержащих переменные, путём непосредственной подстановки в них констант называется методом интерпретаций или методом моделей. Подстановка констант позволяет интерпретировать формулу как осмысленное утверждение об элементах конкретного множества. Поэтому такой метод, выясняющий истинность формулы путём обращения к её возможному смыслу называется семантическим (смысловым). Метод интерпретаций удобен для доказательства выполнимости формул или их неэквивалентности, поскольку и в том, и в другом случае достаточно найти одну подходящую подстановку. Он удобен также для исследования истинности формул на конечных областях. Дело в том, что если область конечна, то кванторы переходят в конечные формулы логики высказываний:

, .

Заменяя все кванторы по этим соотношениям, любую формулу логики предикатов можно перевести в формулу, состоящую из предикатов, соединённых логическими операциями. Истинность такой формулы на конечной области проверятся конечным числом подстановок и вычислений. Методы рассуждений, использующие только конечные множества конечных объектов, называются финитными.

Для бесконечных же областей, в общем случае, при доказательстве тождественной истинности формул метод интерпретации связан с большими трудностями. Поэтому для построения множества истинных формул в логике предикатов выбирается иной путь. Это множество порождается из неких исходных формул (аксиом) с помощью формальных процедур - правил вывода. Используются лишь формальные (а не содержательные), внешние свойства последовательности символов, образующих формулы, причём эти свойства полностью описываются правилами вывода. Множества, порождённые таким формальным методом, называются формальными.