6.2.2. Интервальный статистический ряд
Если генеральная совокупность является непрерывной СВ. (значения выборки практически не повторяются, частота почти каждой варианты равна единице), то строится интервальный статистический ряд вида:
| … | |||
… | ||||
… |
- относительная частота попадания в i-тый интервал.
Оптимальная ширина интервалаh определяется по формуле Стерджеса: , начало первого интервала:
Графическое изображение интервального статистического ряда – гистограмма частот или относительных частот – совокупность прямоугольников с основанием равнымh и высотой / h для гистограммы частот или / h для гистограммы относительных частот.
Задача 2:
В ходе исследования длины китайского слога произведено 50 замеров времени звучания слогов, произнесённых дикторами-китайцами, причём длины слогов колеблются от 40 до 300мс, практически не повторяясь:
73 | 117 | 40 | 211 | 191 | 129 | 136 | 150 | 167 | 142 |
178 | 138 | 156 | 210 | 93 | 137 | 149 | 180 | 212 | 141 |
125 | 106 | 138 | 115 | 123 | 102 | 89 | 153 | 180 | 75 |
131 | 125 | 148 | 110 | 198 | 222 | 128 | 107 | 127 | 100 |
57 | 243 | 163 | 160 | 300 | 218 | 179 | 264 | 115 | 183 |
Таблица 1
Построить интервальный статистический ряд по приведённым данным. Изобразить гистограмму относительных частот полученного распределения.
- Часть1. Тематический план дисциплины
- Часть 2. Конспекты лекций 8
- Часть 3. Вопросы и задания для практических работ. 79
- Часть 4. Задания для самостоятельной работы 92
- Часть 5. Лабораторные работы 97
- Часть1. Тематический план дисциплины «Основы математической обработки информации»
- Часть 2. Конспекты лекций
- 1.1. Исторические периоды развития математики.
- 1.2. Основы теории множеств
- 1.2.1. Начальные понятия теории множеств.
- 2.1.3. Основные понятия комбинаторики
- 2) Перестановка из n элементов – это размещение из n элементов по n.
- 2.2. Начальные понятия теории вероятностей
- 2.2.2. Определения вероятности событий
- 3.1. Действия над событиями
- 3.2. Вероятность суммы событий
- 3.3. Вероятность произведения событий.
- 3.4. Вычисление вероятности цепочек языковых элементов.
- 3.5. Формула полной вероятности. Формула Байеса.
- 1 H2) Формула полной вероятности.
- 3.6. Теорема Бернулли
- 3.7. Вероятностное моделирование порождения текста.
- 3.8. Предельные теоремы в схеме Бернулли
- 4.1. Случайная величина (св). Начальные понятия.
- 4.2. Функция распределения св (интегральная функция распределения) f(X)
- 4.3. Функция плотности вероятности нсв f(X)
- 4.4. Числовые характеристики св
- 4.5. Законы распределения случайных величин.
- 1) Биномиальный закон распределения.
- 2) Закон Пуассона
- 3) Нормальное распределение (закон Гаусса)
- 6. Вероятность попадания нсв х в заданный промежуток
- 7. Логнормальное распределение
- 5.1. Система двух случайных величин (двумерная св) (1 час)
- 5.1.1. Начальные понятия.
- 5.1.2. Операции над независимыми случайными величинами
- 5.1.3. Числовые характеристики системы двух св
- 5.2. Предельные теоремы теории вероятностей: Закон больших чисел, Центральная предельная теорема и их значение для лингвистического эксперимента.(1 час)
- 5.2.1. Теорема Чебышева для среднего арифметического случайных величин.
- 6.1. Предмет математической статистики. Генеральная и выборочная совокупность.
- 6.2. Статистическое распределение выборки и его графическое изображение
- 6.2.1. Дискретный статистический ряд
- 6.2.2. Интервальный статистический ряд
- 6.3. Числовые характеристики статистического распределения
- Лекция 7. Элементы теории статистических оценок и проверки гипотез.
- 7.1 Статистические оценки параметров распределения и их свойства. Оценка параметров генеральной совокупности по выборке
- 7.1.1. Свойства статистических оценок:
- 7.1.2. Точечные оценки математического ожидания, дисперсии и вероятности.
- 7.1.3. Интервальное оценивание параметров.
- 7.1.4. Доверительные интервалы для параметров нормального распределения
- 7.1.5. Число степеней свободы
- 7.1.7. Определение минимально достаточного объёма выборки в грамматических, фонетико-фонологических и лексикологических исследованиях.
- 7.2. Проверка статистических гипотез. Исследование вероятностных свойств языка и статистики текста с помощью метода гипотез.
- 7.2. Проверка статистических гипотез.
- 7.2.1. Статистические гипотезы.
- 7.2.2. Статистический критерий
- 4.2.3. Принцип проверки статистических гипотез
- 7.2.4. Ошибки при проверке гипотез
- 7.2.5. Проверка лингвистических гипотез с помощью параметрических критериев.
- 7.2.6. Проверка гипотез с помощью непараметрических критериев.
- Часть 3. Вопросы и задания для практических работ.
- I. Элементы комбинаторики.
- Часть 4. Задания для самостоятельной работы
- 1. Графический способ.
- 2. Критерий асимметрии и эксцесса.
- 3. Критерий Колмогорова-Смирнова.
- 4. Критерий Пирсона
- Приложение 1. Значения интегральной функции Лапласа
- Приложение 2. Критические значения ( распределение Пирсона)