Линейные дифференциальные уравнения

дипломная работа

2.3 Асимптотическое поведение решений некоторых линейных систем

Если коэффициенты линейной системы дифференциальных уравнений при стремятся к постоянным, то иногда возможно охарактеризовать поведение решений.

Здесь рассматривается проблема для действительного переменного. Рассмотрим пример

где v - действительная дифференцируемая функция, для которой , r - интегрируемая функция и

,

для некоторого t0. (На самом деле достаточно, чтобы функция v имела в интервале ограниченную вариацию.) Без ограничения общности можно в дальнейшем предполагать, что t0 = 0. Из доказанной ниже теоремы следует, что рассматриваемое уравнение имеет два решения ц и ш, такие, что

Делись добром ;)