17. Многокритериальная оптимизация. Проблемы многокритериальной оптимизации
Многокритериальная оптимизацияилипрограммирование— это процесс одновременной оптимизации двух или более конфликтующих целевых функций в заданной области определения.
Задача многокритериальной оптимизации формулируется следующим образом:[3]
где это() целевых функций. Векторы решенийотносятся к непустой области определения.
Задача многокритериальной оптимизации состоит в поиске вектора целевых переменных, удовлетворяющего наложенным ограничениям и оптимизирующего векторную функцию, элементы которой соответствуют целевым функциям. Эти функции образуют математическое описание критерия удовлетворительности и, как правило, взаимно конфликтуют. Отсюда, «оптимизировать» означает найти такое решение, при котором значение целевых функций были бы приемлемыми для постановщика задачи.
Принятие решения - это выбор альтернативы, которая одновременно удовлетворяет и нечетким целям, и нечетким ограничениям. В этом смысле, цели и ограничения являются симметричными относительно решения, что стирает различия между ними и позволяет представить решение как слияние нечетких целей и ограничений.
Рис. 14.1 - К примеру 14.1: принятие решения по принципу Беллмана-Заде
При принятии решений по схеме Беллмана-Заде не делается никакого различия между целью и ограничениями. Всякое разделение на цель и ограничения является условным.
Нечеткий многокритериальный анализ вариантов
Будем считать известными:
- множество вариантов, которые подлежат многокритериальному анализу;
- множество количественных и качественных критериев, которыми оцениваются варианты.
Задача многокритериального анализа состоит в упорядочивании элементов множества X по критериям из множества G.
Пусть - число в диапазоне [0,1], которое характеризирует уровень оценки вариантапо критерию: чем больше число, тем выше оценка вариантапо критерию,,. Тогда критерийможно представить в виде нечеткого множествана универсальном множестве вариантов X:
, | (14.5) |
где - степень принадлежности элементанечеткому множеству.
Находить степени принадлежности нечеткого множества (14.5) удобно методом построения функций принадлежности на основе парных сравнений. При использовании этого метода необходимо сформировать матрицы парных сравнений вариантов по каждому критерию. Общее количество таких матриц совпадает с количеством критериев и равняется n.
Наилучшим вариантом будем тот, который одновременно лучший по всем критериям. Нечеткое решение находится как пересечения частных критериев:
14.6 |
Согласно с полученным нечетким множеством ‚ наилучшим вариантом следует считать тот‚ для которого степень принадлежности является наибольшей.
При неравновесных критериях формула (14.6) принимает вид:
, | (14.7) |
где - коэффициент относительной важности критерия,.
Показатель степень в формуле (14.7) свидетельствует о концентрации нечеткого множествав соответствии с мерой важности критерия. Коэффициенты относительной важности критериев могут быть определены различными методами, например, с помощью парных сравнений по шкале Саати.
- 1. Теория принятия решений: задача принятия решений, цель, проблема, проблемная ситуация.
- 2.Измерения при формировании решений: ранжирование, парное сравнение, непосредственная оценка, виды неопределенностей и их измерение.
- 3.Виды экспертиз.
- 4.Метод Дельфы
- 5. Дерево целей и решений.
- 6.Определение усредненного мнения экспертов (среднее арифметическое, среднее геометрическое, мода, медиана Кемени
- 7.Определение согласованности мнений экспертов (коэффициент конкордации).
- 8.Виды критериев оптимальности и их содержание.
- 9. Критериальный анализ ситуации: метод базовых шкал, ранжирование и выбор критериев.
- 10.Нечеткие множества и основные операции над ними.
- 11.Экспертные методы определения функций принадлежности.
- 12. Аналитический и оптимизационный методы определения функций принадлежности.
- 13. Нечеткая задача оптимизации выбора вариантов проектов.
- 14. Модели стохастического математического программирования
- 15. Генерация альтернатив решений: понятие генетического алгоритма.
- 16. Генерация альтернатив решений: Дерево решений
- 17. Многокритериальная оптимизация. Проблемы многокритериальной оптимизации
- 18. Многокритериальная оптимизация. Множество Парето.
- 19. Многокритериальная оптимизация. Метод идеальной точки.
- 20. Принятие решений по многим критериям: Метод последовательных уступок
- 21. Принятие решений по многим критериям: Парето оптимальное решение
- 23.Принятие решений по многим критериям: Гарантированные достоинства и недостатки.
- 24.Принятие решений по многим критериям: Правило Борда.
- 25.Принятие решений по многим критериям: Принцип Беллмана-Заде
- 26. Принятие решений по многим критериям: Турнирная таблица
- 30.Согласование групповых решений: принцип большинства голосов, принцип диктатора, принцип вето, идеальной точки, консенсус.
- 31.Согласование групповых решений по Парето.
- 32. Согласование групповых решений: Метод идеальной точки
- 33. Марковская модель согласования решений.
- 34. Согласования групповых решений. (принципы Курно, Парето, Эджворта).
- 35. Теория игр: платежная матрица, чистые и смешанные стратегии, решение игры.
- 36. Решение игры в чистых стратегиях. Игры с седловой точкой.
- 37.Решение игры в смешанных стратегиях. Теорема фон Неймана.
- 38.Решение матричных игр МхN (сведение к задаче линейного программирования).
- 39.Игры с природой (теория статистических решений). Особенности платежной матрицы.
- 40.Байесовские стратегии в играх с природой (частичная неопределенность).
- 41. Критерии принятия решений в играх с природой (полная неопределенность).
- 42.Марковские процессы с дискретным временем: основные понятия и определения.
- 43.Игры с природой: оценка риска