33. Марковская модель согласования решений.
При создании математических моделей согласования решений должны фигурировать следующие компоненты
- конечное множество решений (альтернатив) Ki , стратегий, гдеiϵS– номер состояния системы:
- матрици переходов П[s], соответствующие тому или иному принятию к- решению
- матрицы доходов (расходов) R[s], также отражающее эффективность данного решения
Формально, управляемой цепью Маркова (УЦМ) называется случайный процесс, обладающий марковским свойством и включающий в качестве элементов математической модели конструкцию (кортеж) < Ki, П[s],R[s]>. Решение, принимаемое в каждый конкретный момент (шаг процесса) назовем частным управлением.
Таким образом, процесс функционирования системы описываемой УЦМ, выглядит следующим образом:
-если система находится в состоянии i ϵS и принимается решениеk ϵ Кi то она получает доход ri;
-состояние системы в последующий момент времени (шаг) определяется вероятностью Pij , то есть вероятность того, что система из состоянияI€S перейдет в состояниеj ϵ S, если выбрано решениеKi.
Очевидно, общий доход за n-шагов является случайной величиной, зависящей от начального состояния системы и качества принимаемых в в течение хода процесса принятия решений, причем это качество оценивается величиной среднего суммарного дохода (при конечном времени) или среднего дохода за единицу времени (при бесконечном времени). В этих двух случаях для нахождения оптимальных решений обычно сводится в первом случае к решению задач динамического стохастического программирования - рекуррентный алгоритм нахождения оптимального решения, а во втором к решению задач линейного программирования - итерационный алгоритм.
- 1. Теория принятия решений: задача принятия решений, цель, проблема, проблемная ситуация.
- 2.Измерения при формировании решений: ранжирование, парное сравнение, непосредственная оценка, виды неопределенностей и их измерение.
- 3.Виды экспертиз.
- 4.Метод Дельфы
- 5. Дерево целей и решений.
- 6.Определение усредненного мнения экспертов (среднее арифметическое, среднее геометрическое, мода, медиана Кемени
- 7.Определение согласованности мнений экспертов (коэффициент конкордации).
- 8.Виды критериев оптимальности и их содержание.
- 9. Критериальный анализ ситуации: метод базовых шкал, ранжирование и выбор критериев.
- 10.Нечеткие множества и основные операции над ними.
- 11.Экспертные методы определения функций принадлежности.
- 12. Аналитический и оптимизационный методы определения функций принадлежности.
- 13. Нечеткая задача оптимизации выбора вариантов проектов.
- 14. Модели стохастического математического программирования
- 15. Генерация альтернатив решений: понятие генетического алгоритма.
- 16. Генерация альтернатив решений: Дерево решений
- 17. Многокритериальная оптимизация. Проблемы многокритериальной оптимизации
- 18. Многокритериальная оптимизация. Множество Парето.
- 19. Многокритериальная оптимизация. Метод идеальной точки.
- 20. Принятие решений по многим критериям: Метод последовательных уступок
- 21. Принятие решений по многим критериям: Парето оптимальное решение
- 23.Принятие решений по многим критериям: Гарантированные достоинства и недостатки.
- 24.Принятие решений по многим критериям: Правило Борда.
- 25.Принятие решений по многим критериям: Принцип Беллмана-Заде
- 26. Принятие решений по многим критериям: Турнирная таблица
- 30.Согласование групповых решений: принцип большинства голосов, принцип диктатора, принцип вето, идеальной точки, консенсус.
- 31.Согласование групповых решений по Парето.
- 32. Согласование групповых решений: Метод идеальной точки
- 33. Марковская модель согласования решений.
- 34. Согласования групповых решений. (принципы Курно, Парето, Эджворта).
- 35. Теория игр: платежная матрица, чистые и смешанные стратегии, решение игры.
- 36. Решение игры в чистых стратегиях. Игры с седловой точкой.
- 37.Решение игры в смешанных стратегиях. Теорема фон Неймана.
- 38.Решение матричных игр МхN (сведение к задаче линейного программирования).
- 39.Игры с природой (теория статистических решений). Особенности платежной матрицы.
- 40.Байесовские стратегии в играх с природой (частичная неопределенность).
- 41. Критерии принятия решений в играх с природой (полная неопределенность).
- 42.Марковские процессы с дискретным временем: основные понятия и определения.
- 43.Игры с природой: оценка риска