20. Принятие решений по многим критериям: Метод последовательных уступок
Руководитель устанавливает СППР (Система поддержки принятия решений) порядок приоритета логических функций, ставя на первое место наиболее важную, и СППР выполняет сл. операции:
СППР находит =, где-значение логической функции по самой важной характеристике, ее индексi=1,j- номер альтернативы.
Руководитель определяет величину уступки
СППР в пределах уступки находит=
Если таких вариантов нет – руководитель увеличивает уступку и в ее пределах СППР выбирает вариант, имеющий максимум по третьей логической функции и.т.д до полного перебора всех .
Такой способ построения компромиссного решения имеет то преимущество, что руководитель имеет возможность наглядно видеть цену (уступки) по каждому критерию.
Процедура получения компромиссного решения может быть реализована и без назначения уступок . В этом случае вначале отбирают варианты решений по первому (наиболее важному) критерию, затем среди отобранных решений выбираются наилучшие решения по второму критерию и.т.д. Процедура завершается при выборе наилучшего решения по последнему критерию.
Если же методом последовательных уступок решается многокритериальная оптимизационная задача, то к исходным ограничениям задачи на каждом шаге добавляются ограничения вида:
- 1. Теория принятия решений: задача принятия решений, цель, проблема, проблемная ситуация.
- 2.Измерения при формировании решений: ранжирование, парное сравнение, непосредственная оценка, виды неопределенностей и их измерение.
- 3.Виды экспертиз.
- 4.Метод Дельфы
- 5. Дерево целей и решений.
- 6.Определение усредненного мнения экспертов (среднее арифметическое, среднее геометрическое, мода, медиана Кемени
- 7.Определение согласованности мнений экспертов (коэффициент конкордации).
- 8.Виды критериев оптимальности и их содержание.
- 9. Критериальный анализ ситуации: метод базовых шкал, ранжирование и выбор критериев.
- 10.Нечеткие множества и основные операции над ними.
- 11.Экспертные методы определения функций принадлежности.
- 12. Аналитический и оптимизационный методы определения функций принадлежности.
- 13. Нечеткая задача оптимизации выбора вариантов проектов.
- 14. Модели стохастического математического программирования
- 15. Генерация альтернатив решений: понятие генетического алгоритма.
- 16. Генерация альтернатив решений: Дерево решений
- 17. Многокритериальная оптимизация. Проблемы многокритериальной оптимизации
- 18. Многокритериальная оптимизация. Множество Парето.
- 19. Многокритериальная оптимизация. Метод идеальной точки.
- 20. Принятие решений по многим критериям: Метод последовательных уступок
- 21. Принятие решений по многим критериям: Парето оптимальное решение
- 23.Принятие решений по многим критериям: Гарантированные достоинства и недостатки.
- 24.Принятие решений по многим критериям: Правило Борда.
- 25.Принятие решений по многим критериям: Принцип Беллмана-Заде
- 26. Принятие решений по многим критериям: Турнирная таблица
- 30.Согласование групповых решений: принцип большинства голосов, принцип диктатора, принцип вето, идеальной точки, консенсус.
- 31.Согласование групповых решений по Парето.
- 32. Согласование групповых решений: Метод идеальной точки
- 33. Марковская модель согласования решений.
- 34. Согласования групповых решений. (принципы Курно, Парето, Эджворта).
- 35. Теория игр: платежная матрица, чистые и смешанные стратегии, решение игры.
- 36. Решение игры в чистых стратегиях. Игры с седловой точкой.
- 37.Решение игры в смешанных стратегиях. Теорема фон Неймана.
- 38.Решение матричных игр МхN (сведение к задаче линейного программирования).
- 39.Игры с природой (теория статистических решений). Особенности платежной матрицы.
- 40.Байесовские стратегии в играх с природой (частичная неопределенность).
- 41. Критерии принятия решений в играх с природой (полная неопределенность).
- 42.Марковские процессы с дискретным временем: основные понятия и определения.
- 43.Игры с природой: оценка риска