logo
Архив WinRAR_1 / shpory_gotovye_stepin_1

40.Байесовские стратегии в играх с природой (частичная неопределенность).

При частичной неопределенности в качестве показателя эффективности (критерия), который необходимо обратить в максимум принимается среднее значение (математическое ожидание) выигрыша игрока А с учетом всех возможных вероятностей Qj). В этом случае за несколько партий мы получим среднее значение выигрыша (математическое ожидание) – критерий Байеса –Лапласа (B-L – критерий) :

,

где – взвешенное среднее.

Оптимальной стратегией А* = Аi будет та, которая удовлетворяет этому условию.

В результате задача сводится к поиску решения в среднем.

Средний риск:

Можно показать, что стратегия максимизации āi и минимизации одна и та же. В случае, когда известны вероятности Q1, Q2 …. Qn, при решении игры с природой всегда можно обойтись чистыми стратегиями, не применяя смешанных стратегий, то есть:

средний выигрыш – это среднее взвешенное среднего выигрыша, соответствующее чистым стратегиям и:

Поэтому принятие смешанной стратегии игроком А не может быть выгоднее с любыми вероятностями Пi, чем применение чистой стратегии А* = Аi.

Если в качестве оптимальной стратегии выбирается та из них, для которой величина āi обращается в максимум, соответственно в минимум, то такая стратегия называется байесовской.. Эта стратегия является чистой