13. Нечеткая задача оптимизации выбора вариантов проектов.
Реальные прикладные задачи обычно содержат некоторые неизвестные параметры. Когда параметры известны только в пределах определенных границ, один подход к решению таких проблем называется робастной оптимизацией. Этот подход состоит в том, чтобы найти решение, которое является допустимым для всех таких данных и в некотором смысле оптимально.
В общем виде задача нечеткого математического программирования формулируется следующим образом - найти такой вектор x=(xi, x2, ... , xn) , для которого
Отметим, что различают следующие виды нечеткой функции:
нечетко ограниченная функция;
нечеткое рассмотрение четкой функции;
нечеткая функция от нечетких переменных;
четкая функция от нечетких переменных.
Если нечеткие функции f (x) и φi представляют собой нечеткое расширение четкой функции, то есть являются обычными функциями, но с нечеткими коэффициентами или переменными, тогда сформулированная задача представляет собой задачу нечеткого математического программирования.
В зависимости от вида функций f (x) и φi различают следующие задачи:
• оптимизация с нечеткими отношениями;
• оптимизация с нечеткой целью;
• оптимизация с нечеткими ограничениями;
• оптимизация с нечеткой целью и нечеткими ограничениями.
Если же переменные x представляют нечеткие числа, а функции f(x) и φ (х) - четкие, то задача нечеткого математического программирования является задачей оптимизации с нечеткими числами.
- 1. Теория принятия решений: задача принятия решений, цель, проблема, проблемная ситуация.
- 2.Измерения при формировании решений: ранжирование, парное сравнение, непосредственная оценка, виды неопределенностей и их измерение.
- 3.Виды экспертиз.
- 4.Метод Дельфы
- 5. Дерево целей и решений.
- 6.Определение усредненного мнения экспертов (среднее арифметическое, среднее геометрическое, мода, медиана Кемени
- 7.Определение согласованности мнений экспертов (коэффициент конкордации).
- 8.Виды критериев оптимальности и их содержание.
- 9. Критериальный анализ ситуации: метод базовых шкал, ранжирование и выбор критериев.
- 10.Нечеткие множества и основные операции над ними.
- 11.Экспертные методы определения функций принадлежности.
- 12. Аналитический и оптимизационный методы определения функций принадлежности.
- 13. Нечеткая задача оптимизации выбора вариантов проектов.
- 14. Модели стохастического математического программирования
- 15. Генерация альтернатив решений: понятие генетического алгоритма.
- 16. Генерация альтернатив решений: Дерево решений
- 17. Многокритериальная оптимизация. Проблемы многокритериальной оптимизации
- 18. Многокритериальная оптимизация. Множество Парето.
- 19. Многокритериальная оптимизация. Метод идеальной точки.
- 20. Принятие решений по многим критериям: Метод последовательных уступок
- 21. Принятие решений по многим критериям: Парето оптимальное решение
- 23.Принятие решений по многим критериям: Гарантированные достоинства и недостатки.
- 24.Принятие решений по многим критериям: Правило Борда.
- 25.Принятие решений по многим критериям: Принцип Беллмана-Заде
- 26. Принятие решений по многим критериям: Турнирная таблица
- 30.Согласование групповых решений: принцип большинства голосов, принцип диктатора, принцип вето, идеальной точки, консенсус.
- 31.Согласование групповых решений по Парето.
- 32. Согласование групповых решений: Метод идеальной точки
- 33. Марковская модель согласования решений.
- 34. Согласования групповых решений. (принципы Курно, Парето, Эджворта).
- 35. Теория игр: платежная матрица, чистые и смешанные стратегии, решение игры.
- 36. Решение игры в чистых стратегиях. Игры с седловой точкой.
- 37.Решение игры в смешанных стратегиях. Теорема фон Неймана.
- 38.Решение матричных игр МхN (сведение к задаче линейного программирования).
- 39.Игры с природой (теория статистических решений). Особенности платежной матрицы.
- 40.Байесовские стратегии в играх с природой (частичная неопределенность).
- 41. Критерии принятия решений в играх с природой (полная неопределенность).
- 42.Марковские процессы с дискретным временем: основные понятия и определения.
- 43.Игры с природой: оценка риска