[Править] Уровень значимости и мощность.
При проверке статистической гипотезы возможны ошибки. Есть два рода ошибок. Ошибка первого рода заключается в том, что отвергают нулевую гипотезу, в то время как в действительности эта гипотеза верна. Ошибка второго рода состоит в том, что принимают нулевую гипотезу, в то время как в действительности эта гипотеза неверна.
Вероятность ошибки первого рода называется уровнем значимости и обозначается α. Таким образом, , то есть уровень значимости α — это вероятность события, вычисленная в предположении, что верна нулевая гипотезаH0.
Уровень значимости однозначно определен, если H0— простая гипотеза. Если жеH0— сложная гипотеза, то уровень значимости, вообще говоря, зависит от функции распределения результатов наблюдений, удовлетворяющейH0. Статистику критерияUобычно строят так, чтобы вероятность событияне зависела от того, какое именно распределение (из удовлетворяющих нулевой гипотезеH0) имеют результаты наблюдений. Для статистик критерияUобщего вида под уровнем значимости понимают максимально возможную ошибку первого рода. Максимум (точнее, супремум) берется по всем возможным распределениям, удовлетворяющим нулевой гипотезеH0, то есть.
Если критическая область имеет вид, указанный в формуле (9), то
. (10)
Если Cзадано, то из последнего соотношения определяют α. Часто поступают по иному — задавая α (обычно α = 0,05, иногда α = 0,01 или α = 0,1, другие значения α используются гораздо реже), определяютCиз уравнения (10), обозначая егоCα, и используют критическую областьс заданным уровнем значимости α.
Вероятность ошибки второго рода есть . Обычно используют не эту вероятность, а ее дополнение до 1, то есть. Эта величина носит название мощности критерия. Итак, мощность критерия — это вероятность того, что нулевая гипотеза будет отвергнута, когда альтернативная гипотеза верна.
Понятия уровня значимости и мощности критерия объединяются в понятии функции мощности критерия — функции, определяющей вероятность того, что нулевая гипотеза будет отвергнута. Функция мощности зависит от критической области Ψ и действительного распределения результатов наблюдений. В параметрической задаче проверки гипотез распределение результатов наблюдений задается параметром θ. В этом случае функция мощности обозначается M(Ψ,θ) и зависит от критической области Ψ и действительного значения исследуемого параметра θ. Если
, ,
то
, ,
где α — вероятность ошибки первого рода, β — вероятность ошибки второго рода. В статистическом приемочном контроле α — риск изготовителя, β — риск потребителя. При статистическом регулировании технологического процесса α — риск излишней наладки, β — риск незамеченной разладки.
Функция мощности M(Ψ,θ) в случае одномерного параметра θ обычно достигает минимума, равного α, при θ = θ0, монотонно возрастает при удалении от θ0и приближается к 1 при.
В ряде вероятностно-статистических методов принятия решений используется оперативная характеристика L(Ψ,θ) — вероятность принятия нулевой гипотезы в зависимости от критической области Ψ и действительного значения исследуемого параметра θ. Ясно, что
.
- Проверка статистических гипотез
- Статистические гипотезы
- 1. Простые и сложные гипотезы и их проверка
- 2. Критерий согласия Пирсона
- Поведение , когда гипотезаверна.
- Поведение , когда гипотезаневерна.
- Критерий проверки.
- Границы применимости критерия на практике.
- 3. Критерий согласия для сложных гипотез
- 4. О критериях согласия Колмогорова и Смирнова
- 5. Проверка нормальности при помощи вероятностной бумаги
- Статистические критерии.
- [Править] Уровень значимости и мощность.
- [Править] Состоятельность и несмещенность критериев.
- [Править] Некоторые типовые задачи прикладной статистики [править] Статистические данные и прикладная статистика
- [Править] Статистический анализ точности и стабильности технологических процессов и качества продукции
- [Править] Задачи одномерной статистики (статистики случайных величин)
- [Править] Непараметрическое оценивание математического ожидания.
- [Править] Непараметрическое оценивание функции распределения.
- [Править] Таблица 1
- [Править] Проблема исключения промахов.
- [Править] Многомерный статистический анализ
- [Править] Корреляция и регрессия.
- [Править] Дисперсионный анализ.
- [Править] Методы классификации.
- [Править] Дискриминантный анализ.
- [Править] Кластер-анализ.
- [Править] Задачи группировки.
- [Править] Снижение размерности.
- [Править] Статистика случайных процессов и временных рядов
- [Править] Статистика объектов нечисловой природы
- Лабораторная работа №14. Изучение критериев Колмогорова и омега-квадрат
- Лабораторная работа №15. Изучение критерия хи-квадрат Пирсона