16 Методика розв’язування задач на побудову . Основні методи .
Найпростіші геом. побудови учні викон. уже в поч. школі та в 5-6 класах: проводять прямі, кола, відрізки, рівні даним, будують кути заданої градусної міри, викор-чи транспортир... У курсі геом. спец. виділяються задачі на побудову, які розв’язуються лише за допомогою циркуля і лінійки. Вони мають значну дидактичну цінність, бо не лише формують практичні навички виконання осн. побудов, а й розвивають лог. мислення, формують евристичну діяльність. Такі задачі розв. в 4 етапи: 1) аналіз задачі, 2) побудова за знайденим планом, 3) доведення, 4) дослідження.
Осн. мета вивч. геом. побудов у школі - навчити учнів виконувати основні побудови циркулем і лінійкою та розв’язувати нескладні комбіновані задачі, які зводяться до виконання осн. побудов. До осн. побудов віднесено 5 побудов:
1) трикутника за даними сторонами,
2) кута, що дорівнює даному,
3) бісектриси даного кута,
4) перпендикулярної прямої,
5) поділ відрізка пополам.
Лінійкою можна лише провести: 1) довільну пряму, 2) довільну пряму, що проходить через дану точку, 3) пряму, що проходить через дві дані точки. Циркулем можна лише описати коло з даного центра даним радіусом, зокрема відкласти на даній прямій від даної точки даний відрізок. Треба вимагати від кожного учня засвоєння алгоритму основної побудови. Напр., щоб побудувати бісектрису кута, треба: 1) описати з вершини кута як із центра коло довільного радіуса, 2) з точок перетину побудованого кола зі сторонами кута описати два кола тим самим радіусом і позначити їх точку перетину, відмінну від вершини кута, 3) через вершину кута і точку перетину кіл провести промінь, який є бісектрисою кута
Основні методи розв’язування задач на побудову:
метод ГМТ;
метод симетрії;
метод ПП;
алгебраїчний.
- 1 Цілі і завдання загальної освіти і цілі навчання математиці в загальноосвітній школі
- Внутріпредметні та між предметні зв’язки.
- 2 Характеристика основних методів навчання математики : пояснювально-ілюстративний , репродуктивний , проблемний , Метод доцільних задач.
- 3. Типи уроків та їх структура.Викладання математики за лекційно-практичною системою.
- 4 .Вимоги до сучасного уроку математики в школі. 5-6 кл, 7-9 кл.
- 5.Діяльнісний підхід до навчання мат-ки. Аналіз, синтез, порівняння.
- 6. Методика формування математичних понять в шкм .Види означень в шкм.
- 7. Методика навчання учнів дов-ня мат тверджень .Теореми . Методика доведення теорем у шкм.
- 8.. Задачі в навчанні мат-ки. Методика роз’язування математичних задач.
- 9. Контроль знань та вмінь учнів з математики . Основні вимоги до контролю в умовах диференціального навчання .Види тестів і їх характеристика .
- 10. Методика вивчення натуральних чисел Десяткових дробів і процентів. Методика вивчення звичайних дробів . Методика вивчення дійсних чисел.
- 11. Поняття про ірраціональне число і множину дійсних чисел. Методика викладання тотожних перетворень ірраціональних виразів.
- 12. Рівняння та нерівності в основній школі і методика їх вивчення.Методика вивчення дробово-раціональних рівнянь та нерівностей. Метод інтервалів.
- 13. Функціональна пропедевтика (математика 5-6 кл.) Функції у курсі алгебри основної школи.
- 14. Методика вивчення тригонометричних рівнянь і нерівностей.Методика вивчення тригонометричних ф-цій.
- 16 Методика розв’язування задач на побудову . Основні методи .
- Метод гмт.
- Метод паралельного перенесення:
- Алгебраїчний метод:
- 18. Методика введеня теми „перетворення подібності”.
- 19.. Методика проведення перших уроків планіметрії
- 20. Координати і вектори на площині.
- 22.Методика вивчення тем "Паралельність прямих на площині". Сума кутів трикутника.
- 23. Методика введеня теми „Подібність фігур”.
- 24. Методика вивчення теми чотирикутники.Методика вивчення многокутників.