8.2. Применение процессоров электронных таблиц для оценки эффективности инвестиций
Данные представляются в виде табл. 8.4.
Таблица 8.4
Исходные данные
Номер проекта | I | P1 | P2 | P3 | P4 |
1 | -400000 | 150000 | 170000 | 200000 | 150000 |
2 | -420000 | 200000 | 110000 | 120000 | 170000 |
3 | -400000 | 200000 | 20000 | 200000 | 100000 |
4 | -420000 | 250000 | 250000 | 100000 | 100000 |
PV вычисляем по функции ПС в меню «Вставка»-«Функции»-«Финансовые».
Функция ПС вычисляет чистый текущий объем вклада, используя учетную ставку, а также объемы будущих платежей (отрицательные значения) и поступлений (положительные значения).
Синтаксис:
ПС (ставка;значение1;значение2; ...)
Ставка - это учетная ставка за один период.
Значение 1, значение 2, ... - это от 1 до 29 аргументов, представляющих расходы и доходы.
Значение 1, значение 2, ... должны быть равномерно распределены во времени, выплаты должны осуществляться в конце каждого периода.
ПС использует порядок аргументов значение 1, значение 2, ... для определения порядка поступлений и платежей. Убедитесь в том, что Ваши платежи и поступления введены в правильном порядке.
Аргументы, которые являются числами, пустыми ячейками, логическими значениями или текстовыми представлениями чисел учитываются; аргументы, которые являются значениями ошибки или текстами, которые не могут быть преобразованы в числа, игнорируются.
Если аргумент является массивом или ссылкой, то учитываются только числа. Пустые ячейки, логические значения, тексты или значения ошибок в массиве или ссылке игнорируются.
IRR вычисляем по функции «Финансовые» «ЧИСТВНДОХ» (возвращает внутреннюю скорость оборота для ряда последовательных операций с наличными, представленными числовыми значениями).
Объемы операций не обязаны быть одинаковыми, как в случае ренты. Однако они должны происходить через равные промежутки времени, например ежемесячно или ежегодно. Внутренняя скорость оборота - это процентная ставка дохода, полученного от инвестиции, состоящая из выплат (отрицательные значения) и поступлений (положительные значения), которые происходят в регулярные периоды времени.
Синтаксис: ЧИСТВНДОХ (значения; прогноз). Значения - это массив или ссылка на ячейки, содержащие числовые величины, для которых вычисляется внутренняя скорость оборота средств (ячейки прибыли и затрат).
Значения должны включать, по крайней мере, одно положительное значение и одно отрицательное значение, для того чтобы можно было вычислить внутреннюю скорость оборота.
ЧИСТВНДОХ использует порядок значений для интерпретации порядка денежных выплат или поступлений. Убедитесь, что Вы ввели значения выплат и поступлений в правильном порядке.
Если аргумент, который является массивом или ссылкой, содержит тексты, логические значения или пустые ячейки, то такие значения игнорируются.
Прогноз - это величина, о которой предполагается, что она близка к результату ЧИСТВНДОХ.
Microsoft Excel использует метод итераций для вычисления ВНДОХ. Начиная со значения прогноз, функция ЧИСТВНДОХ выполняет циклические вычисления, пока не получит результат с точностью 0,00001 процента. Если функция ЧИСТВНДОХ не может получить результат после 20 попыток, то возвращается значение ошибки #ЧИСЛО!
В большинстве случаев нет необходимости задавать прогноз для вычислений с помощью функции ВНДОХ. Если прогноз опущен, то он полагается равным 0,1 (10 процентов).
Если ЧИСТВНДОХ выдает значение ошибки #ЧИСЛО! или если результат далек от ожидаемого, можно попытаться выполнить вычисления еще раз с другим значением аргумента.
Пример расчета представлен в табл.8.5.
Таблица 8.5
Результаты расчета эффективности инвестиционных проектов
№ проекта | I | P1 | P2 | P3 | P4 | r | PV | NPV | PI | IRR | effekt |
1 | -400000 | 150000 | 170000 | 200000 | 150000 | 0,10 | 529574,48 | 129574,48 | 1,32 | 0,24 | 0,14 |
2 | -420000 | 200000 | 110000 | 120000 | 170000 | 0,10 | 478997,34 | 58997,34 | 1,14 | 0,17 | 0,07 |
3 | -400000 | 200000 | 20000 | 200000 | 100000 | 0,10 | 416911,41 | 16911,41 | 1,04 | 0,12 | 0,02 |
4 | -420000 | 250000 | 250000 | 100000 | 100000 | 0,10 | 577317,12 | 157317,12 | 1,37 | 0,30 | 0,20 |
- Введение
- Понятие об экономико-математических методах и моделях
- 1.1.Определение модели и цели моделирования
- 1.2. Последовательность построения экономико-математической модели
- 1.3. Классификация экономико-математических методов
- 1.4. Классификация экономико-математических моделей
- 1.5. Объекты моделирования
- 1.6. Цель, критерий и ограничения в экономико-математических моделях
- 2. Математические модели рынка
- 2.1. Понятие рыночного равновесия
- 2.2. Паутинообразная модель рынка
- 2.3. Существование и единственность рыночного равновесия
- 2.4. Государственное регулирование рынка. Налоги
- . Дотации
- 2.6. Фиксированные цены
- 2.7. Оценка прибыли и убытков при государственном регулировании рынка
- 2.8. Поддержание стабильных цен и производственные квоты
- 2.9. Принципы ценообразования в рыночной экономике. Диверсификация цен
- 2.9.1. Диверсификация цен в зависимости от дохода покупателя
- 2.9.2. Диверсификация цен в зависимости от объема потребления
- 2.9.3. Диверсификация цен по категориям товаров
- Совокупная прибыль
- 2.9.4. Диверсификация цен по времени
- 3. Производственные функции
- 3.1. Виды производственных функций
- 3.2. Функция Кобба-Дугласа
- 3.3. Модель Солоу
- 3.4. Модель Стоуна
- 3.5. Двойственная задача потребительского выбора
- 3.6. Функция спроса Маршалла
- 3.7. Модель общего равновесия Вальраса
- 3.8. Рыночное равновесие в модели Леонтьева
- 3.9. Пример построения производственной функции
- Значения коэффициентов парной корреляции
- 3.10. Производственные функции и прогнозирование
- 4. Модели оптимального планирования
- 4.1. Оптимизация прибыли предприятия
- Исходные данные для предельного анализа
- 4.2. Оптимизация прибыли методами математического программирования
- Исходные данные для решения задачи оптимизации
- 4.3. Оптимизация прибыли при ограничениях на используемые ресурсы
- Исходные данные по изделиям
- Результаты расчета Таблица 4.8
- 4.4. Планирование оптимальной мощности строительного предприятия
- Для решения задачи на пк коэффициенты целевой функции, матрицы ограничений и правые части ограничений необходимо записать в виде симплекс-матрицы (табл.4.10).
- Оптимальное значение целевой функции – 240,000.
- 4.5. Модели стохастического программирования
- 4.6. Модели оптимального планирования транспортного типа
- 4.7. Решение задач по планированию перевозок
- 4.8. Производственно-транспортные модели
- 4.9. Транспортные модели с промежуточными пунктами
- 4.10. Модели параметрического программирования
- 4.11. Модель распределения инвестиционных ресурсов между строительными организациями, прошедшими конкурсный отбор
- 4.12. Производственно-транспортная задача прикрепления источников теплоснабжения к потребителям продукции
- 5. Матричные игры
- 5.1. Классификация матричных игр
- 5.2. Игры с нулевой суммой
- 5.3. Решение игры в чистых стратегиях
- 5.4. Решение игры в смешанных стратегиях
- Очевидным следствием из теоремы о минимаксе является соотношение
- 5.5. Игры с ненулевой суммой и кооперативные игры
- 5.6. Введение в теорию игр п лиц
- 5.7. Позиционные игры
- 5.8. Выбор оптимальной стратегии в условиях неопределенности (игры с природой)
- 5.8.1. Специфика ситуации полной неопределенности
- 5.8.2. Критерии выбора оптимальной стратегии
- 5.9. Применение теории матричных игр в управлении
- 5.10. Сведение матричной игры к задаче линейного программирования Рассмотрим игру, платежная матрица которой имеет размерность
- 5.11. Решение игры с применением процессора электронных таблиц
- 5.12. Определение победителя подрядных торгов с применением теории игр
- 6. Имитационное моделирование
- 6.1. Метод Монте-Карло
- 7. Моделирование систем массового обслуживания
- 7.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
- 7.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
- 8. Модели оценки эффективности инвестиционных проектов
- 8.1. Расчет абсолютных и относительных показателей эффективности проекта
- 8.2. Применение процессоров электронных таблиц для оценки эффективности инвестиций
- 8.3. Оптимальное планирование портфеля инвестиций
- 8.4. Учет факторов риска при оценке инвестиций
- 8.5. Определение уровня недиверсифицируемого риска методом корреляционно-регрессионного анализа
- Исходные данные для расчета
- 9. Модели оценки финансового состояния предприятия
- 9.1. Виды моделей
- 9.2. Статическая и динамическая модели оценки финансового
- Коэффициенты рентабельности
- Оценка деловой активности
- Оценка финансовой устойчивости
- Оценка платежеспособности и ликвидности
- Рекомендуемые значения оцениваемых показателей
- Вопросы и задания
- Заключение
- Библиографический список
- Экономико-математические методы и модели
- 394006 Г.Воронеж, ул. 20-летия Октября, 84