6.1. Метод Монте-Карло
Датой рождения метода Монте-Карло принято считать 1949 г., когда появилась статья под названием «The Monte Carlo method» [21]. Создателями этого метода считают американских математиков Дж. Неймана и С. Улама. В СССР первые статьи о методе Монте-Карло были опубликованы в 1955—1956 гг.
Любопытно, что теоретическая основа метода была известна давно. Более того, некоторые задачи статистики рассчитывались иногда с помощью случайных выборок, т. е. фактически методом Монте-Карло. Однако до появления электронных вычислительных машин (ЭВМ) этот метод не мог найти сколько-нибудь широкого применения, так как моделировать случайные величины вручную—очень трудоемкая работа.
Таким образом, возникновение метода Монте-Карло как весьма универсального численного метода стало возможным только благодаря появлению ЭВМ.
Само название «Монте-Карло» происходит от города Монте-Карло в княжестве Монако, знаменитого своими игорными домами.
Идея метода чрезвычайно проста, и состоит она в следующем. Вместо того, чтобы описывать процесс с помощью аналитического аппарата (дифференциальных или алгебраических уравнений), производится «розыгрыш» случайного явления с помощью специально организованной процедуры, включающей в себя случайность и дающей случайный результат. Если таких реализаций получено много. Это множество реализаций можно использовать как некий искусственно полученный статистический материал, который может быть обработан обычными методами математической статистики.
После такой обработки могут быть получены любые интересующие нас характеристики: вероятности событий, математические ожидания и дисперсии случайных величин и т. д. При моделировании случайных явлений методом Монте-Карло мы пользуемся самой случайностью как аппаратом исследования, заставляем ее «работать на нас».
Нередко такой прием оказывается проще, чем попытки построить аналитическую модель. Для сложных операций, где участвует большое число элементов (машин, людей, организаций, подсобных средств), в которых случайные факторы сложно переплетены, а процесс явно немарковский, метод статистического моделирования, как правило, оказывается проще аналитического (а нередко бывает и единственно возможным).
В сущности, методом Монте-Карло может быть решена любая вероятностная задача, но оправданным он становится только тогда, когда процедура розыгрыша проще, а не сложнее аналитического расчета. Приведем пример, когда метод Монте-Карло возможен, но крайне неразумен. Пусть, например, по какой-то цели производится три независимых выстрела, из которых каждый попадает в цель с вероятностью 1/2. Требуется найти вероятность хотя бы одного попадания.
Элементарный расчет дает нам вероятность хотя бы одного попадания равную 1 — (1/2)3 = 7/8. Ту же задачу можно решить и «розыгрышем», статистическим моделированием. Вместо «трех выстрелов» будем бросать «три монеты», считая, скажем, орел—за «попадание», решку — за «промах». Опыт считается «удачным», если хотя бы на одной из монет выпадет орел. Произведем очень много опытов, подсчитаем общее количество «удач» и разделим на число N произведенных опытов. Таким образом, мы получим частоту события, а она при большом числе опытов близка к вероятности.
Метод Монте-Карло - это численный метод решения математических задач при помощи моделирования случайных величин.
Первая особенность метода - простая структура вычислительного алгоритма.
Вторая особенность метода - погрешность вычислений, как правило, пропорциональна D/N2, где D - некоторая постоянная, N - число испытаний. Отсюда видно, что для того, чтобы уменьшить погрешность в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N (т. е. объем работы) в 100 раз.
Ясно, что добиться высокой точности таким путем невозможно. Поэтому обычно говорят, что метод Монте-Карло особенно эффективен при решении тех задач, в которых результат нужен с небольшой точностью (5-10%).
Вопросы и задания
1. Приведите примеры задач, которые могут быть решены методами имитационного моделирования.
2. Чем отличается метод Монте-Карло от аналитического описания процесса?
3. Как определяется математическое ожидание случайной величины?
4. Что такое дисперсия случайной величины?
- Введение
- Понятие об экономико-математических методах и моделях
- 1.1.Определение модели и цели моделирования
- 1.2. Последовательность построения экономико-математической модели
- 1.3. Классификация экономико-математических методов
- 1.4. Классификация экономико-математических моделей
- 1.5. Объекты моделирования
- 1.6. Цель, критерий и ограничения в экономико-математических моделях
- 2. Математические модели рынка
- 2.1. Понятие рыночного равновесия
- 2.2. Паутинообразная модель рынка
- 2.3. Существование и единственность рыночного равновесия
- 2.4. Государственное регулирование рынка. Налоги
- . Дотации
- 2.6. Фиксированные цены
- 2.7. Оценка прибыли и убытков при государственном регулировании рынка
- 2.8. Поддержание стабильных цен и производственные квоты
- 2.9. Принципы ценообразования в рыночной экономике. Диверсификация цен
- 2.9.1. Диверсификация цен в зависимости от дохода покупателя
- 2.9.2. Диверсификация цен в зависимости от объема потребления
- 2.9.3. Диверсификация цен по категориям товаров
- Совокупная прибыль
- 2.9.4. Диверсификация цен по времени
- 3. Производственные функции
- 3.1. Виды производственных функций
- 3.2. Функция Кобба-Дугласа
- 3.3. Модель Солоу
- 3.4. Модель Стоуна
- 3.5. Двойственная задача потребительского выбора
- 3.6. Функция спроса Маршалла
- 3.7. Модель общего равновесия Вальраса
- 3.8. Рыночное равновесие в модели Леонтьева
- 3.9. Пример построения производственной функции
- Значения коэффициентов парной корреляции
- 3.10. Производственные функции и прогнозирование
- 4. Модели оптимального планирования
- 4.1. Оптимизация прибыли предприятия
- Исходные данные для предельного анализа
- 4.2. Оптимизация прибыли методами математического программирования
- Исходные данные для решения задачи оптимизации
- 4.3. Оптимизация прибыли при ограничениях на используемые ресурсы
- Исходные данные по изделиям
- Результаты расчета Таблица 4.8
- 4.4. Планирование оптимальной мощности строительного предприятия
- Для решения задачи на пк коэффициенты целевой функции, матрицы ограничений и правые части ограничений необходимо записать в виде симплекс-матрицы (табл.4.10).
- Оптимальное значение целевой функции – 240,000.
- 4.5. Модели стохастического программирования
- 4.6. Модели оптимального планирования транспортного типа
- 4.7. Решение задач по планированию перевозок
- 4.8. Производственно-транспортные модели
- 4.9. Транспортные модели с промежуточными пунктами
- 4.10. Модели параметрического программирования
- 4.11. Модель распределения инвестиционных ресурсов между строительными организациями, прошедшими конкурсный отбор
- 4.12. Производственно-транспортная задача прикрепления источников теплоснабжения к потребителям продукции
- 5. Матричные игры
- 5.1. Классификация матричных игр
- 5.2. Игры с нулевой суммой
- 5.3. Решение игры в чистых стратегиях
- 5.4. Решение игры в смешанных стратегиях
- Очевидным следствием из теоремы о минимаксе является соотношение
- 5.5. Игры с ненулевой суммой и кооперативные игры
- 5.6. Введение в теорию игр п лиц
- 5.7. Позиционные игры
- 5.8. Выбор оптимальной стратегии в условиях неопределенности (игры с природой)
- 5.8.1. Специфика ситуации полной неопределенности
- 5.8.2. Критерии выбора оптимальной стратегии
- 5.9. Применение теории матричных игр в управлении
- 5.10. Сведение матричной игры к задаче линейного программирования Рассмотрим игру, платежная матрица которой имеет размерность
- 5.11. Решение игры с применением процессора электронных таблиц
- 5.12. Определение победителя подрядных торгов с применением теории игр
- 6. Имитационное моделирование
- 6.1. Метод Монте-Карло
- 7. Моделирование систем массового обслуживания
- 7.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
- 7.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
- 8. Модели оценки эффективности инвестиционных проектов
- 8.1. Расчет абсолютных и относительных показателей эффективности проекта
- 8.2. Применение процессоров электронных таблиц для оценки эффективности инвестиций
- 8.3. Оптимальное планирование портфеля инвестиций
- 8.4. Учет факторов риска при оценке инвестиций
- 8.5. Определение уровня недиверсифицируемого риска методом корреляционно-регрессионного анализа
- Исходные данные для расчета
- 9. Модели оценки финансового состояния предприятия
- 9.1. Виды моделей
- 9.2. Статическая и динамическая модели оценки финансового
- Коэффициенты рентабельности
- Оценка деловой активности
- Оценка финансовой устойчивости
- Оценка платежеспособности и ликвидности
- Рекомендуемые значения оцениваемых показателей
- Вопросы и задания
- Заключение
- Библиографический список
- Экономико-математические методы и модели
- 394006 Г.Воронеж, ул. 20-летия Октября, 84