1.4. Классификация экономико-математических моделей
Математические модели, используемые в экономике, можно разделить на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария.
В зависимости от типа моделируемого объекта модели бывают макро- и микроэкономические.
Макроэкономическиемодели описывают экономику как единое целое, связывая между собой ее укрупненные показатели: ВВП, инвестиции, производительность труда, занятость, процентную ставку и др. показатели.
Микроэкономическиемодели описывают взаимодействие структурных и функциональных составляющих экономики либо поведение одной такой составляющей в рыночной среде. Вследствие разнообразия типов экономических элементов и форм их взаимодействия на рынке микроэкономическое моделирование занимает основную часть экономико-математической теории.
В зависимости от целей моделирования могут разрабатываться теоретические и прикладные модели.
Теоретические модели позволяют изучать общие свойства экономики и ее характерных элементов. Прикладные модели дают возможность оценить параметры функционирования конкретного экономического объекта и сформулировать рекомендации для принятия практических решений.
В моделировании рыночной экономики особое место занимают равновесные модели, которые описывают состояние экономики, когда результирующая всех сил, стремящихся вывести ее из данного состояния, равна нулю, например, модели рыночного равновесия спроса и предложения.
Оптимизационные моделив рыночной экономике обычно строятся на микроуровне, например максимизация прибыли или минимизация затрат при фирменном планировании.
В зависимости от используемого инструментария и от характера изучаемых процессов все виды моделирования могут быть разделены на детерминированные и стохастические, дискретные и непрерывные, статические и динамические, линейные и нелинейные.
Детерминированное моделирование отображает детерминированные процессы, т.е. процессы, в которых предполагается отсутствие всяких случайных воздействий.
Стохастическоемоделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характеристики процесса.
Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, т.е. прерывистыми, состоящими из отдельных частей.
Непрерывное моделирование позволяет отобразить непрерывные процессы в системах.
По временному признаку модели могут быть статическими и динамическими. В статических моделях описывается состояние экономического объекта в конкретный момент или период времени, а динамические модели включают взаимосвязи переменных во времени (например, за пятилетний период).
По степени огрубления формы структурных отношений исследуемого объекта модели подразделяются на линейные и нелинейные. В линейных моделях все искомые переменные записаны в первой степени, а на графиках они могут быть представлены в виде прямых линий. В нелинейных моделях искомые переменные записаны в степени выше первой или в виде их произведений.
В зависимости от формы представления объекта можно выделить мысленное и реальное моделирование.
Мысленноемоделирование часто является единственным способом моделирования объектов, которые практически нереализуемы в заданном интервале времени либо существуют вне условий, возможных для их физического созерцания. Мысленное моделирование может быть реализовано в виде наглядного и математического.
При наглядном моделировании на базе представлений человека о реальных объектах создаются различные наглядные модели, отражающие явления и процессы, протекающие в объекте.
В основу гипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта.
Аналоговое моделированиеосновывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов.
Мысленный макет может применяться в тех случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию.
Символическое моделирование может быть языковым или знаковым. В основе языкового моделирования лежит некий тезаурус, т.е. словарь, очищенный от неоднозначности, присущей обычному словарю (например, слово "КЛЮЧ").
Знаковое моделирование позволяет с помощью знаков отображать набор понятий, т.е. составить цепочки из слов и предложений и таким образом дать описание реального объекта.
Математическими моделями называют комплекты математических зависимостей, отображающие существенные характеристики изучаемого явления. Во многих случаях математические модели наиболее полно отображают моделируемый объект. В то же время математические модели более динамичны, на них лучше найти оптимальные параметры объекта. Для моделирования экономических явлений другие модели, кроме экономико-математических, как правило, использовать нельзя. Экономико-математические модели, в свою очередь, бывают двух типов: аналитические и имитационные.
Для аналитического моделирования процессы функционирования записываются в виде некоторых функциональных отношений (алгебраических, конечно-разностных и т.д.). При имитационном моделировании имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени.
Реальное моделированиеявляется наиболее адекватным, но его возможности с учетом сложности моделируемых объектов очень ограничены.
- Введение
- Понятие об экономико-математических методах и моделях
- 1.1.Определение модели и цели моделирования
- 1.2. Последовательность построения экономико-математической модели
- 1.3. Классификация экономико-математических методов
- 1.4. Классификация экономико-математических моделей
- 1.5. Объекты моделирования
- 1.6. Цель, критерий и ограничения в экономико-математических моделях
- 2. Математические модели рынка
- 2.1. Понятие рыночного равновесия
- 2.2. Паутинообразная модель рынка
- 2.3. Существование и единственность рыночного равновесия
- 2.4. Государственное регулирование рынка. Налоги
- . Дотации
- 2.6. Фиксированные цены
- 2.7. Оценка прибыли и убытков при государственном регулировании рынка
- 2.8. Поддержание стабильных цен и производственные квоты
- 2.9. Принципы ценообразования в рыночной экономике. Диверсификация цен
- 2.9.1. Диверсификация цен в зависимости от дохода покупателя
- 2.9.2. Диверсификация цен в зависимости от объема потребления
- 2.9.3. Диверсификация цен по категориям товаров
- Совокупная прибыль
- 2.9.4. Диверсификация цен по времени
- 3. Производственные функции
- 3.1. Виды производственных функций
- 3.2. Функция Кобба-Дугласа
- 3.3. Модель Солоу
- 3.4. Модель Стоуна
- 3.5. Двойственная задача потребительского выбора
- 3.6. Функция спроса Маршалла
- 3.7. Модель общего равновесия Вальраса
- 3.8. Рыночное равновесие в модели Леонтьева
- 3.9. Пример построения производственной функции
- Значения коэффициентов парной корреляции
- 3.10. Производственные функции и прогнозирование
- 4. Модели оптимального планирования
- 4.1. Оптимизация прибыли предприятия
- Исходные данные для предельного анализа
- 4.2. Оптимизация прибыли методами математического программирования
- Исходные данные для решения задачи оптимизации
- 4.3. Оптимизация прибыли при ограничениях на используемые ресурсы
- Исходные данные по изделиям
- Результаты расчета Таблица 4.8
- 4.4. Планирование оптимальной мощности строительного предприятия
- Для решения задачи на пк коэффициенты целевой функции, матрицы ограничений и правые части ограничений необходимо записать в виде симплекс-матрицы (табл.4.10).
- Оптимальное значение целевой функции – 240,000.
- 4.5. Модели стохастического программирования
- 4.6. Модели оптимального планирования транспортного типа
- 4.7. Решение задач по планированию перевозок
- 4.8. Производственно-транспортные модели
- 4.9. Транспортные модели с промежуточными пунктами
- 4.10. Модели параметрического программирования
- 4.11. Модель распределения инвестиционных ресурсов между строительными организациями, прошедшими конкурсный отбор
- 4.12. Производственно-транспортная задача прикрепления источников теплоснабжения к потребителям продукции
- 5. Матричные игры
- 5.1. Классификация матричных игр
- 5.2. Игры с нулевой суммой
- 5.3. Решение игры в чистых стратегиях
- 5.4. Решение игры в смешанных стратегиях
- Очевидным следствием из теоремы о минимаксе является соотношение
- 5.5. Игры с ненулевой суммой и кооперативные игры
- 5.6. Введение в теорию игр п лиц
- 5.7. Позиционные игры
- 5.8. Выбор оптимальной стратегии в условиях неопределенности (игры с природой)
- 5.8.1. Специфика ситуации полной неопределенности
- 5.8.2. Критерии выбора оптимальной стратегии
- 5.9. Применение теории матричных игр в управлении
- 5.10. Сведение матричной игры к задаче линейного программирования Рассмотрим игру, платежная матрица которой имеет размерность
- 5.11. Решение игры с применением процессора электронных таблиц
- 5.12. Определение победителя подрядных торгов с применением теории игр
- 6. Имитационное моделирование
- 6.1. Метод Монте-Карло
- 7. Моделирование систем массового обслуживания
- 7.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
- 7.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
- 8. Модели оценки эффективности инвестиционных проектов
- 8.1. Расчет абсолютных и относительных показателей эффективности проекта
- 8.2. Применение процессоров электронных таблиц для оценки эффективности инвестиций
- 8.3. Оптимальное планирование портфеля инвестиций
- 8.4. Учет факторов риска при оценке инвестиций
- 8.5. Определение уровня недиверсифицируемого риска методом корреляционно-регрессионного анализа
- Исходные данные для расчета
- 9. Модели оценки финансового состояния предприятия
- 9.1. Виды моделей
- 9.2. Статическая и динамическая модели оценки финансового
- Коэффициенты рентабельности
- Оценка деловой активности
- Оценка финансовой устойчивости
- Оценка платежеспособности и ликвидности
- Рекомендуемые значения оцениваемых показателей
- Вопросы и задания
- Заключение
- Библиографический список
- Экономико-математические методы и модели
- 394006 Г.Воронеж, ул. 20-летия Октября, 84