7.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
Простейшей одноканальной моделью с вероятностными входным потоком и процедурой обслуживания является модель, характеризуемая показательным распределением как длительностей интервалов между поступлениями требований, так и длительностей обслуживания. При этом плотность распределения длительностей интервалов между поступлениями требований имеет вид
, (7.1)
где λ — интенсивность поступления заявок в систему.
Плотность распределения длительностей обслуживания:
(7.2)
где μ — интенсивность обслуживания.
Потоки заявок и обслуживаний простейшие.
Пусть система работает с отказами. Необходимо определить абсолютную и относительную пропускную способность системы.
Представим данную систему массового обслуживания в виде графа (рис.7.1), у которого имеются два состояния:
S0 — канал свободен (ожидание);
S1 — канал занят (идет обслуживание заявки).
λ
μ
Рис. 7.1. Граф состояний одноканальной СМО с отказами
Обозначим вероятности состояний:
P0(t) - вероятность состояния «канал свободен»;
P1(t) — вероятность состояния «канал занят».
При этом выполняется условие P0(t) + P1(t) = 1. Следовательно, P1(t)=1-P0(t).
Для одноканальной СМО с отказами вероятность P0(t) есть не что иное, как относительная пропускная способность системы q.
Действительно, P0 — вероятность того, что в момент t канал свободен и заявка, пришедшая к моменту t, будет обслужена, следовательно, для данного момента времени t среднее отношение числа обслуженных заявок к числу поступивших также равно P0(t)=q.
По истечении большого интервала времени (при t → ∞) достигается стационарный (установившийся) режим:
(7.3)
Зная относительную пропускную способность, легко найти абсолютную. Абсолютная пропускная способность А — среднее число заявок, которое может обслужить система массового обслуживания в единицу времени:
(7.4)
Вероятность отказа в обслуживании заявки будет равна вероятности состояния «канал занят»:
. (7.5)
Данная величина Ротк может быть интерпретирована как средняя доля необслуженных заявок среди поданных.
Рассмотрим теперь одноканальную СМО с ожиданием.
Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание — простейший поток с интенсивностью λ. Интенсивность потока обслуживания равна μ (т. е. в среднем непрерывно занятый канал будет выдавать μ обслуженных заявок). Длительность обслуживания — случайная величина, подчиненная показательному закону распределения. Поток обслуживаний является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.
Предположим, что независимо от того, сколько требований поступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N-требований (заявок), т.е. клиенты, не попавшие в ожидание, вынуждены обслуживаться в другом месте. Наконец, источник, порождающий заявки на обслуживание, имеет неограниченную (бесконечно большую) емкость.
Граф состояний СМО в этом случае имеет вид, показанный на рис. 7.2.
λ λ λ λ λ λ
μ μ μ μ μ μ
Рис. 7.2. Граф состояний одноканальной СМО с ожиданием
Состояния СМО имеют следующую интерпретацию:
S0 — «канал свободен»;
S1 — «канал занят» (очереди нет);
S2— «канал занят» (одна заявка стоит в очереди);
Sn — «канал занят» (п — 1 заявок стоит в очереди);
SN — «канал занят» (N — 1 заявок стоит в очереди).
Условие стационарности системы выполняется при < 1 .
Следует отметить, что выполнение условия стационарности < 1 для данной СМО не обязательно, поскольку число допускаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди (которая не может превышать N — 1), а не соотношением между интенсивностями входного потока, т. е. не отношением .
Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N — 1):
вероятность отказа в обслуживании заявки:
(7.6)
относительная пропускная способность системы:
; (7.7)
абсолютная пропускная способность:
A=q·λ; (7.8)
среднее число находящихся в системе заявок:
; (7.9)
среднее время пребывания заявки в системе:
(7.10)
средняя продолжительность пребывания клиента (заявки) в очереди:
Wq=WS -1/μ; (7.11)
среднее число заявок (клиентов) в очереди (длина очереди):
Lq = λ(1-PN)Wq . (7.12)
Рассмотрим одноканальную СМО с ожиданием без ограничения на вместимость блока ожидания (т. е. N → ∞). Остальные условия функционирования СМО остаются без изменений.
Стационарный режим функционирования данной СМО существует при t → ∞ для любого п = 0, 1, 2, ... и когда λ < μ.
Характеристики одноканальной СМО с ожиданием без ограничения на длину очереди следующие:
• среднее число находящихся в системе клиентов (заявок) на обслуживание:
; (7.13)
• средняя продолжительность пребывания клиента в системе:
(7.14)
• среднее число клиентов в очереди на обслуживании:
; (7.15)
• средняя продолжительность пребывания клиента в очереди:
(7.16)
- Введение
- Понятие об экономико-математических методах и моделях
- 1.1.Определение модели и цели моделирования
- 1.2. Последовательность построения экономико-математической модели
- 1.3. Классификация экономико-математических методов
- 1.4. Классификация экономико-математических моделей
- 1.5. Объекты моделирования
- 1.6. Цель, критерий и ограничения в экономико-математических моделях
- 2. Математические модели рынка
- 2.1. Понятие рыночного равновесия
- 2.2. Паутинообразная модель рынка
- 2.3. Существование и единственность рыночного равновесия
- 2.4. Государственное регулирование рынка. Налоги
- . Дотации
- 2.6. Фиксированные цены
- 2.7. Оценка прибыли и убытков при государственном регулировании рынка
- 2.8. Поддержание стабильных цен и производственные квоты
- 2.9. Принципы ценообразования в рыночной экономике. Диверсификация цен
- 2.9.1. Диверсификация цен в зависимости от дохода покупателя
- 2.9.2. Диверсификация цен в зависимости от объема потребления
- 2.9.3. Диверсификация цен по категориям товаров
- Совокупная прибыль
- 2.9.4. Диверсификация цен по времени
- 3. Производственные функции
- 3.1. Виды производственных функций
- 3.2. Функция Кобба-Дугласа
- 3.3. Модель Солоу
- 3.4. Модель Стоуна
- 3.5. Двойственная задача потребительского выбора
- 3.6. Функция спроса Маршалла
- 3.7. Модель общего равновесия Вальраса
- 3.8. Рыночное равновесие в модели Леонтьева
- 3.9. Пример построения производственной функции
- Значения коэффициентов парной корреляции
- 3.10. Производственные функции и прогнозирование
- 4. Модели оптимального планирования
- 4.1. Оптимизация прибыли предприятия
- Исходные данные для предельного анализа
- 4.2. Оптимизация прибыли методами математического программирования
- Исходные данные для решения задачи оптимизации
- 4.3. Оптимизация прибыли при ограничениях на используемые ресурсы
- Исходные данные по изделиям
- Результаты расчета Таблица 4.8
- 4.4. Планирование оптимальной мощности строительного предприятия
- Для решения задачи на пк коэффициенты целевой функции, матрицы ограничений и правые части ограничений необходимо записать в виде симплекс-матрицы (табл.4.10).
- Оптимальное значение целевой функции – 240,000.
- 4.5. Модели стохастического программирования
- 4.6. Модели оптимального планирования транспортного типа
- 4.7. Решение задач по планированию перевозок
- 4.8. Производственно-транспортные модели
- 4.9. Транспортные модели с промежуточными пунктами
- 4.10. Модели параметрического программирования
- 4.11. Модель распределения инвестиционных ресурсов между строительными организациями, прошедшими конкурсный отбор
- 4.12. Производственно-транспортная задача прикрепления источников теплоснабжения к потребителям продукции
- 5. Матричные игры
- 5.1. Классификация матричных игр
- 5.2. Игры с нулевой суммой
- 5.3. Решение игры в чистых стратегиях
- 5.4. Решение игры в смешанных стратегиях
- Очевидным следствием из теоремы о минимаксе является соотношение
- 5.5. Игры с ненулевой суммой и кооперативные игры
- 5.6. Введение в теорию игр п лиц
- 5.7. Позиционные игры
- 5.8. Выбор оптимальной стратегии в условиях неопределенности (игры с природой)
- 5.8.1. Специфика ситуации полной неопределенности
- 5.8.2. Критерии выбора оптимальной стратегии
- 5.9. Применение теории матричных игр в управлении
- 5.10. Сведение матричной игры к задаче линейного программирования Рассмотрим игру, платежная матрица которой имеет размерность
- 5.11. Решение игры с применением процессора электронных таблиц
- 5.12. Определение победителя подрядных торгов с применением теории игр
- 6. Имитационное моделирование
- 6.1. Метод Монте-Карло
- 7. Моделирование систем массового обслуживания
- 7.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
- 7.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
- 8. Модели оценки эффективности инвестиционных проектов
- 8.1. Расчет абсолютных и относительных показателей эффективности проекта
- 8.2. Применение процессоров электронных таблиц для оценки эффективности инвестиций
- 8.3. Оптимальное планирование портфеля инвестиций
- 8.4. Учет факторов риска при оценке инвестиций
- 8.5. Определение уровня недиверсифицируемого риска методом корреляционно-регрессионного анализа
- Исходные данные для расчета
- 9. Модели оценки финансового состояния предприятия
- 9.1. Виды моделей
- 9.2. Статическая и динамическая модели оценки финансового
- Коэффициенты рентабельности
- Оценка деловой активности
- Оценка финансовой устойчивости
- Оценка платежеспособности и ликвидности
- Рекомендуемые значения оцениваемых показателей
- Вопросы и задания
- Заключение
- Библиографический список
- Экономико-математические методы и модели
- 394006 Г.Воронеж, ул. 20-летия Октября, 84