3.1. Виды производственных функций
Производственные функции в широком смысле охватывают моделирование зависимостей, существующих между такими показателями производственной деятельности, как объем выпускаемой продукции, капитальные затраты, фондоотдача, производительность труда и т.д.
В более узком смысле под производственной функцией понимается зависимость выпуска продукции от затрат различных производственных ресурсов. В общем виде функция может быть записана в виде
(3.1)
где - выпуск продукции;
- факторы, определяющие величину выпуска продукции (затраты труда, материалов и т.д.). Зависимость между затратами различных видов ресурсов и объемом выпуска продукции должна быть выражена уравнением множественной регрессии.
При разработке ЭММ нередко исходят из предположения о линейной зависимости между затратами ресурсов и выпуском продукции. Однако предположение о линейном характере зависимости затрат и выпуска продукции является значительно упрощенным. Если по отношению к затратам материалов и сырья это предположение может быть принято, то по отношению машин это предположение не всегда может быть принято.
Построение моделей оптимального планирования, приближающихся к реальной экономической действительности, требуют углубления и уточнения связей между затратами ресурсов и выпуском продукции.
Наиболее часто в качестве нелинейной функции используется уравнение
(3.2)
Этому уравнению соответствует линейно-логарифмическая функция
(3.3)
Для каждого фактора можно определить абсолютную скорость, с которой в пределе возрастает выпуск продукции с ростом затрат данного фактора. Эта скорость определяется как частная производная выпуска продукции по затратам данного вида ресурсов:
. (3.4)
Абсолютная скорость зависит от величины всех компонентов уравнения. Отношения частных производных для двух каких-либо факторов служат своеобразными нормами заменяемости этих ресурсов с точки зрения производства данной продукции.
Наряду с абсолютной скоростью большой интерес представляет изменение выпуска продукции при увеличении затрат ресурсов данного вида на 1%.
Для получения относительной скорости нужно величину абсолютной скорости умножить на отношение затрат ресурсов к выпуску продукции.
Так, для первого фактора относительная скорость составляет
(3.5)
Относительная скорость изменения объема выпуска продукции от изменения затрат на 1 % называется эластичностью выпуска по затратам и обозначается символом Е. Для любого i фактора выполняется условие
. (3.6)
Таким образом, для уравнения типа (3.2) эластичность выпуска продукции для каждого фактора является величиной постоянной и равна соответствующему коэффициенту уравнения регрессии. При любом объеме затрат и выпуска увеличение затрат i-го вида ресурсов на 1 % ведет к увеличению выпуска продукции на %.
Будем предполагать, что фирма производит n различных видов продукции. Обозначим через q=(q1, ….. qn)T вектор выпуска, компонентами которого являются выпуски каждого конкретного вида продукции. Предположим, что для осуществления выпуска используется m видов факторов производства. Обозначим через x=(x1, ….. xm)T вектор затрат факторов производства, компонентами которого являются объемы потребления каждого конкретного фактора.
Множество векторов выпуска продукции образуют так называемое пространство выпуска:
(3.7)
Множество векторов затрат факторов производства образуют так называемое пространство затрат:
(3.8)
Технологическая связь между затратами факторов производства и объемом выпуска продукции описывается с помощью производственной функции.
Функция q=f(x), которая каждому вектору затрат из пространства затрат ставит в соответствие максимальный выпуск, который может быть произведен при данных затратах, называется производственной функцией фирмы.
В общем случае производственную функцию можно записать в неявной форме:
где A представляет собой технологическую матрицу размерами n x m.
Если в качестве независимых аргументов рассматриваются затраты, то производственную функцию называют функцией выпуска. Если в качестве независимых аргументов рассматриваются объемы выпуска, то производственную функцию называют функцией затрат. В дальнейшем для простоты выкладок мы будем предполагать, что фирма выпускает только один вид продукции.
С понятием производственной функции связано понятие предельного продукта.
Предельным продуктом i-го фактора производства (MPi-marginal product (англ.)) называют дополнительный объем выпуска, который будет произведен при потребления каждой дополнительной единицы данного фактора:
(3.9)
Производственная функция обладает следующими свойствами.
1. C увеличением потребления какого-либо фактора значение выпуска продукции возрастает:
(3.10)
2. C увеличением объема потребления какого либо фактора скорость выпуска продукции убывает:
(3.11)
3. Производственная функция является однородной функцией своих аргументов:
(3.12)
где β представляет собой степень однородности.
Рассмотрим основные виды производственных функций:
1. Неоклассическая производственная функция (производственная функция Кобба-Дугласа):
(3.13)
Здесь величины a1, ….. am представляют эластичности выпуска к изменению объема соответствующего фактора производства, А- масштабирующий множитель.
2. Производственная функция «затраты-выпуск» (функция Леонтьева):
. (3.14)
Эта функция задает пропорции, в которых осуществляется потребление затрат факторов производства для осуществления выпуска одной единицы продукции. Величины a1, ….. am представляют собой пропорции объемов потребления соответствующих факторов производства.
3. Линейная производственная функция:
. (3.15)
Данное семейство функций полезности описывает ситуацию, когда факторы производства являются полностью взаимозаменяемыми. Коэффициенты a1,…..am представляют собой пропорции, в которых один фактор может быть заменен другим.
Переменные издержки касаются использования имеющихся в распоряжении фирмы факторов производства и изменяются в соответствии с объемом выпуска продукции.
- Введение
- Понятие об экономико-математических методах и моделях
- 1.1.Определение модели и цели моделирования
- 1.2. Последовательность построения экономико-математической модели
- 1.3. Классификация экономико-математических методов
- 1.4. Классификация экономико-математических моделей
- 1.5. Объекты моделирования
- 1.6. Цель, критерий и ограничения в экономико-математических моделях
- 2. Математические модели рынка
- 2.1. Понятие рыночного равновесия
- 2.2. Паутинообразная модель рынка
- 2.3. Существование и единственность рыночного равновесия
- 2.4. Государственное регулирование рынка. Налоги
- . Дотации
- 2.6. Фиксированные цены
- 2.7. Оценка прибыли и убытков при государственном регулировании рынка
- 2.8. Поддержание стабильных цен и производственные квоты
- 2.9. Принципы ценообразования в рыночной экономике. Диверсификация цен
- 2.9.1. Диверсификация цен в зависимости от дохода покупателя
- 2.9.2. Диверсификация цен в зависимости от объема потребления
- 2.9.3. Диверсификация цен по категориям товаров
- Совокупная прибыль
- 2.9.4. Диверсификация цен по времени
- 3. Производственные функции
- 3.1. Виды производственных функций
- 3.2. Функция Кобба-Дугласа
- 3.3. Модель Солоу
- 3.4. Модель Стоуна
- 3.5. Двойственная задача потребительского выбора
- 3.6. Функция спроса Маршалла
- 3.7. Модель общего равновесия Вальраса
- 3.8. Рыночное равновесие в модели Леонтьева
- 3.9. Пример построения производственной функции
- Значения коэффициентов парной корреляции
- 3.10. Производственные функции и прогнозирование
- 4. Модели оптимального планирования
- 4.1. Оптимизация прибыли предприятия
- Исходные данные для предельного анализа
- 4.2. Оптимизация прибыли методами математического программирования
- Исходные данные для решения задачи оптимизации
- 4.3. Оптимизация прибыли при ограничениях на используемые ресурсы
- Исходные данные по изделиям
- Результаты расчета Таблица 4.8
- 4.4. Планирование оптимальной мощности строительного предприятия
- Для решения задачи на пк коэффициенты целевой функции, матрицы ограничений и правые части ограничений необходимо записать в виде симплекс-матрицы (табл.4.10).
- Оптимальное значение целевой функции – 240,000.
- 4.5. Модели стохастического программирования
- 4.6. Модели оптимального планирования транспортного типа
- 4.7. Решение задач по планированию перевозок
- 4.8. Производственно-транспортные модели
- 4.9. Транспортные модели с промежуточными пунктами
- 4.10. Модели параметрического программирования
- 4.11. Модель распределения инвестиционных ресурсов между строительными организациями, прошедшими конкурсный отбор
- 4.12. Производственно-транспортная задача прикрепления источников теплоснабжения к потребителям продукции
- 5. Матричные игры
- 5.1. Классификация матричных игр
- 5.2. Игры с нулевой суммой
- 5.3. Решение игры в чистых стратегиях
- 5.4. Решение игры в смешанных стратегиях
- Очевидным следствием из теоремы о минимаксе является соотношение
- 5.5. Игры с ненулевой суммой и кооперативные игры
- 5.6. Введение в теорию игр п лиц
- 5.7. Позиционные игры
- 5.8. Выбор оптимальной стратегии в условиях неопределенности (игры с природой)
- 5.8.1. Специфика ситуации полной неопределенности
- 5.8.2. Критерии выбора оптимальной стратегии
- 5.9. Применение теории матричных игр в управлении
- 5.10. Сведение матричной игры к задаче линейного программирования Рассмотрим игру, платежная матрица которой имеет размерность
- 5.11. Решение игры с применением процессора электронных таблиц
- 5.12. Определение победителя подрядных торгов с применением теории игр
- 6. Имитационное моделирование
- 6.1. Метод Монте-Карло
- 7. Моделирование систем массового обслуживания
- 7.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
- 7.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
- 8. Модели оценки эффективности инвестиционных проектов
- 8.1. Расчет абсолютных и относительных показателей эффективности проекта
- 8.2. Применение процессоров электронных таблиц для оценки эффективности инвестиций
- 8.3. Оптимальное планирование портфеля инвестиций
- 8.4. Учет факторов риска при оценке инвестиций
- 8.5. Определение уровня недиверсифицируемого риска методом корреляционно-регрессионного анализа
- Исходные данные для расчета
- 9. Модели оценки финансового состояния предприятия
- 9.1. Виды моделей
- 9.2. Статическая и динамическая модели оценки финансового
- Коэффициенты рентабельности
- Оценка деловой активности
- Оценка финансовой устойчивости
- Оценка платежеспособности и ликвидности
- Рекомендуемые значения оцениваемых показателей
- Вопросы и задания
- Заключение
- Библиографический список
- Экономико-математические методы и модели
- 394006 Г.Воронеж, ул. 20-летия Октября, 84