Доверительный интервал для математического ожидания нормального распределения при известной дисперсии.
Пусть случайная величина (можно говорить о генеральной совокупности) распределена по нормальному закону, для которого известна дисперсия D = 2 ( > 0). Из генеральной совокупности (на множестве объектов которой определена случайная величина) делается выборка объема n. Выборка x1, x2,..., xn рассматривается как совокупность n независимых случайных величин, распределенных так же как (подход, которому дано объяснение выше по тексту).
Ранее также обсуждались и доказаны следующие равенства:
Mx1 = Mx2 = ... = Mxn = M;
Dx1 = Dx2 = ... = Dxn = D;
M;
D /n;
Достаточно просто доказать (мы доказательство опускаем), что случайная величина в данном случае также распределена по нормальному закону.
Обозначим неизвестную величину M через a и подберем по заданной надежности число d > 0 так, чтобы выполнялось условие:
P( – a < d) = (1)
Так как случайная величина распределена по нормальному закону с математическим ожиданием M = M = a и дисперсией D = D /n = 2/n, получаем:
P( – a < d) =P(a – d < < a + d) = =
Осталось подобрать d таким, чтобы выполнялось равенство или .
Для любого [0;1] можно по таблице найти такое число t, что ( t )= / 2. Это число t иногда называют квантилем.
Теперь из равенства определим значение d: .
Окончательный результат получим, представив формулу (1) в виде: .
Смысл последней формулы состоит в следующем: с надежностью доверительный интервал
покрывает неизвестный параметр a = M генеральной совокупности. Можно сказать иначе: точечная оценка определяет значение параметра M с точностью d= t / и надежностью .
Задача. Пусть имеется генеральная совокупность с некоторой характеристикой, распределенной по нормальному закону с дисперсией, равной 6,25. Произведена выборка объема n = 27 и получено средневыборочное значение характеристики = 12. Найти доверительный интервал, покрывающий неизвестное математическое ожидание исследуемой характеристики генеральной совокупности с надежностью =0,99.
Решение. Сначала по таблице для функции Лапласа найдем значение t из равенства (t) = / 2 = 0,495. По полученному значению t = 2,58 определим точность оценки (или половину длины доверительного интервала) d: d = 2,52,58 / 1,24. Отсюда получаем искомый доверительный интервал: (10,76; 13,24).
-
Yandex.RTB R-A-252273-3
Содержание
- Абсолютная и условная сходимость числовых рядов. Свойства абсолютно сходящихся рядов.
- Функциональные ряды. Точка сходимости ряда. Степенной ряд.
- Мажорируемые и равномерно сходящиеся ряды.
- Сходимость степенных рядов. Теорема Абеля. Радиус сходимости степенного ряда.
- Определение радиуса сходимости степенного ряда. Признак Даламбера. Радикальный признак Коши. Свойства степенных рядов.
- Ряды Тейлора и Маклорена. Примеры (разложение в ряд Тейлора элементарных функций).
- Метрическое пространство. Фундаментальная последовательность. Полное метрическое пространство.
- Линейное пространство. Аксиомы линейного пространства. Нормированное пространство. Банаховы пространства.
- Ряды Фурье. Разложение функции по произвольной ортогональной системе функций.
- Тригонометрические ряды Фурье. Разложение в ряд Фурье четных и нечетных функций.
- Комплексные числа и действия над ними.
- Возведение в степень
- Последовательности комплексных чисел. Сходимость последовательности комплексных чисел.
- Функции комплексных переменных. Основные элементарные функции комплексного переменного.
- Производная функции комплексного переменного. Условия Даламбера-Эйлера. Определение аналитической функции. Дифференциал. Производная элементарной функции.
- Интегрирование функции комплексного переменного. Сведение интеграла к сумме криволинейных интегралов второго рода.
- Теорема Коши. Первообразная и неопределенный интеграл. Формула Ньютона-Лейбница.
- Интегральная формула Коши. Ряды Тейлора и Лорана. Физический смысл аналитической функции.
- Классификация особых точек аналитической функции. Вычисление вычета в полюсе. Теорема о вычетах.
- Обыкновенные дифференциальные уравнения.
- Закон радиоактивного распада.
- Общий интеграл. Общее решение. Задача Коши. Теорема Коши о существовании и единственности решения.
- Решение дифференциальных уравнений с разделяющимися переменными.
- Метод вариации произвольной постоянной.
- Уравнение в полных дифференциалах.
- Дифференциальные уравнения высших порядков. Уравнения, допускающие понижение порядка.
- Линейные дифференциальные уравнения. Определитель Вронского. Фундаментальная система решений.
- Линейные однородные дифференциальные уравнения n-того порядка. Фундаментальная система решений. Определитель Вронского.
- Интегрирование линейных однородных дифференциальных уравнений второго порядка.
- Решение линейных неоднородных дифференциальных уравнений со специальной правой частью.
- Системы дифференциальных уравнений, разрешенных относительно производных. Теорема Коши. Метод исключения для решения систем дифференциальных уравнений.
- Случайные события и их вероятности.
- Операции над событиями. Классическое определение вероятности. Геометрическое определение вероятности.
- Свойства вероятности. Применение комбинаторики к вычислению вероятности.
- Условные вероятности. Независимость событий.
- Формула полной вероятности. Формула Байеса.
- Предельная теорема в схеме Бернулли. Формула Пуассона.
- Локальная и интегральная теоремы Муавра-Лапласа.
- Системы случайных величин. Функции распределения системы случайных величин.
- Плотности вероятности системы случайных величин. Условные законы распределения.
- Математическое ожидание и дисперсия случайных величин.
- Условное математическое ожидание. Корреляционный момент и коэффициент корреляции. Свойства коэффициента корреляции.
- Сходимость по вероятности. Второе неравенство Чебышева.
- Правило трех сигм. Теорема Маркова.
- Теорема Чебышева. Закон больших чисел. Центральная предельная теорема (теорема Ляпунова).
- Предмет математической статистики. Задачи математической статистики. Генеральная и выборочная совокупности.
- Эмпирическая функция распределения. Числовые характеристики статистического распределения.
- Статистическая оценка параметров. Несмещенная, эффективная и состоятельная оценки.
- Теорема о выборочном среднем. Исправленная выборочная дисперсия.
- Метод моментов. Метод максимального правдоподобия.
- Интервальное оценивание параметров. Доверительный интервал для математического ожидания при известной дисперсии.
- Доверительный интервал для математического ожидания нормального распределения при известной дисперсии.
- Доверительный интервал для математического ожидания при неизвестной дисперсии.
- Проверка статистических гипотез. Критерий Колмогорова.