1.3. Ділення з остачею
Ділення одного натурального числа на інше ціле не завжди виконується. Тому розглядають більш загальну дію — ділення з остачею.
Поділити натуральне число на натуральне число з остачею — означає подати число у вигляді де і — невід’ємні цілі числа, причому Число при цьому називається неповною часткою, а число — остачею від ділення на Наприклад, при діленні числа 27 на 6 неповна частка дорівнює 4, а остача Щоб знайти ділене при діленні з остачею, потрібно неповну частку помножити на дільник і до здобутого добутку додати остачу. Очевидно, що тоді і тільки тоді, коли є дільником Ділення з остачею завжди виконується, про що свідчить наведена далі теорема (теорема про ділення з остачею).
Теорема. Для будь-яких натуральних чисел і існує єдина пара невід’ємних цілих чисел і , таких що
де
- 1.1. Натуральні числа
- 1.2. Цілі числа
- 1.3. Ділення з остачею
- 1.4. Подільність натуральних чисел
- 1.5. Взаємно-прості та прості числа. Нск та нсд. Ознаки подільності натуральних чисел Взаємно прості та прості числа
- Найменше спільне кратне та методи його знаходження
- Методи знаходження найменшого спільного кратного чисел a I b
- Найбільший спільний дільник та методи його знаходження
- Порівняння за модулем
- Ознаки подільності (оп)
- 1.6. Раціональні числа. Арифметичні дії з раціональними числами
- Зведення дробів до найменшого спільного знаменника
- 1.7. Відношення та пропорції
- 1.8. Десяткові дроби
- 1.9. Відсотки
- Відповіді
- 1.10. Нескінченні десяткові дроби. Періодичні десяткові дроби
- Теорема. Якщо де і — цілі невід’ємні числа, то, перетворюючи нескоротний дріб на десятковий, дістають нескінченний періодичний десятковий дріб.
- 1.11. Поняття про ірраціональні числа. Дійсні числа
- 1.12. Модуль дійсного числа, його властивості
- 2.1. Основні поняття та формули
- 2.2. Ділення многочленів
- Отже, Оскільки числа і — корені тричлена то даний многочлен має три корені: 1, і .
- 2.3. Корінь n-го степеня з дійсного числа. Арифметичний коріньn-го степеня. Правила дій із коренями
- 2.4. Степінь із раціональним показником
- 2.5. Перетворення числових та алгебраїчних виразів