00 = Векторная алгебра
12.2. Свойства смешанного произведения
Свойство 1. ;
.
Свойство 2. Геометрический смысл векторного произведения: модуль смешанного произведения векторов , и равен объёму параллелепипеда, построенного на этих векторах.
Векторы, параллельные одной плоскости, называются компланарными. Для любых двух векторов найдется плоскость, параллельная этим векторам. Поэтому, два вектора всегда компларны. Три и более количество векторов могут быть параллельными одной плоскости, и могут не быть параллельными. Следующее свойство даёт ответ на вопрос: является ли данная тройка векторов компланарной?
Свойство 3. – компланарные; для того чтобы три вектора принадлежали одной плоскости, необходимо и достаточно, чтобы их смешанное произведение равнялось нулю.
Содержание
- Алгебра и геометрия конспекты лекций векторная алгебра
- 1. Основные определения
- 2. Действия над векторами
- 2.1. Умножение вектора на число
- 2.2. Сумма векторов
- 2.3. Разность векторов
- 3. Числовая ось
- 4. Единичный вектор
- 5. Угол между векторами
- 6. Проекция вектора на ось
- 7. Системы координат
- 7.1. Декартова система координат на плоскости
- 7.2. Декартова система координат в пространстве
- 10. Скалярное произведение двух векторов
- 10.1. Определение скалярного произведения
- 10.2. Свойства скалярного произведения
- 11. Векторное произведение двух векторов
- 11.1. Определение векторного произведения
- 11.2. Свойства векторного произведения
- 12. Смешанное произведение трёх векторов
- 12.1. Определение смешанного произведения
- 12.2. Свойства смешанного произведения