logo search
Конспект лекций по ТВМС

Статистическое определение вероятности события. Случаи неравновероятных исходов.

Классическое определение вероятности имеет ограниченную применимость. Так, оно неприемлемо, если результаты испытания не равновозможны.

Во многих случаях более удобным оказывается статистическое определение вероятности, которое связано с понятием относительной частоты появления события в опытах. Относительная частота появления события – это отношение числа появлений события в серии из опытов к числу испытаний:

.

Опыт показывает, что при проведении сравнительно малого числа испытаний относительная частота принимает значения, которые могут сильно отличаться друг от друга. При однотипных массовых испытаниях во многих случаях наблюдается устойчивость относительной частоты события, т.е. с увеличением числа испытаний относительная частота колеблется около некоторого постоянного числа , причем эти отклонения тем меньше, чем больше произведено испытаний.

Вероятностью события в статистическом смысле называется число , относительно которого стабилизируется (устанавливается) относительная частота при неограниченном увеличении числа опытов.

Поэтому, на практике за вероятность события принимается относительная частота при достаточно большом числе испытаний.

Свойства вероятности, вытекающие из классического определения вероятности, сохраняются и при статистическом определении вероятности.

Если вероятность некоторого события близка к нулю, то, в соответствии со сказанным следует, что при единичном испытании в подавляющем большинстве случаев такое событие не наступит. Возникает вопрос: насколько малой должна быть вероятность, чтобы можно было пренебречь вероятностью наступления некоторого события в единичном испытании (например, землетрясение в Минске)? Достаточно малую вероятность, при которой наступление события можно считать практически невозможным, называют уровнем значимости. На практике уровень значимости обычно принимают равным 0,05 (пятипроцентный уровень) или 0,01 (однопроцентный уровень).