Расчет характеристик систем массового обслуживания Одноканальные модели а. Одноканальная модель с отказами
Простейшая одноканальная модель СМО характеризуется показательным распределением как длительностей интервалов между поступлениями требований, так и длительностей обслуживания. Плотность распределения длительностей интервалов между поступлениями требований имеет вид
, (1)
где - интенсивность поступления заявок в систему.
Плотность распределения длительностей обслуживания:
где - интенсивность обслуживания.
Потоки заявок и обслуживаний являются простейшими.
Пусть система работает с отказами. Необходимо определить абсолютную и относительную пропускную способность системы.
Представим данную СМО в виде графа (Рис. 1), у которого имеется два состояния: - канал свободен и - канал занят (идет обслуживание заявки).
Рис. 1. Граф состояний одноканальной СМО с отказами.
Пусть и - вероятности того, что канал свободен и занят соответственно. Составим систему дифференциальных уравнений Колмогорова
. (3)
Эта система имеет решение с учетом условия нормировки . Решение называется неустановившимся, поскольку оно непосредственно зависит от времени:
Для одноканальной СМО с отказами вероятность представляет собой относительную пропускную способность системы . Действительно, - вероятность того, что в момент времени канал свободен и заявка, пришедшая к этому моменту, будет обслужена, и следовательно, среднее отношение числа обслуженных заявок к числу поступивших также равно :
.
По истечении большого интервала времени (при ) достигается стационарный (установившийся) режим:
.
Абсолютная пропускная способность ( ) – среднее число заявок, которое может обслужить СМО в единицу времени:
.
Вероятность отказа в обслуживании заявки равна вероятности состояния “канал занят”
Эта величина представляет собой среднюю долю не обслуженных заявок.
Пример. Одноканальная СМО с отказами представляет собой пост ежедневного обслуживания для мойки автомобилей. Заявка – автомобиль, прибывший в момент, когда пост занят – получает отказ в обслуживании. Интенсивность потока автомобилей (автомобиль в час). Средняя продолжительность обслуживания 1,8 часа. Поток автомобилей и поток обслуживания являются простейшими.
Требуется определить в установившемся режиме параметры СМО.
Решение.
Интенсивность потока обслуживания
Относительная пропускная способность
,
что означает, что в установившемся режиме система будет обслуживать примерно 35% прибывших на пост автомобилей
Абсолютная пропускная способность т.е. пост способен обслужить в среднем 0,356 автомобилей в час.
Вероятность отказа , что означает, что около 65% прибывших на пост автомобилей получат отказ в обслуживании.
Так как номинальная пропускная способность системы равна
то фактическая пропускная способность, вычисленная с учетом случайного характера потока заявок и времени обслуживания, в примерно в 1,5 (0,555/0,356) раза меньше номинальной.
- Лекция 1. Предмет теории вероятностей и математической статистики и их роль в экономике и менеджменте
- Лекция 2. Аксиоматика теории вероятности Понятие случайного эксперимента.
- Пространство элементарных событий.
- Совместные и несовместные события.
- Операции над событиями (сумма, разность, произведение).
- Свойства операций над событиями.
- Алгебра и сигма-алгебра событий.
- Лекция 3. Методы определения вероятностей событий
- Классическое определение вероятности события. Случаи равновероятных исходов.
- Статистическое определение вероятности события. Случаи неравновероятных исходов.
- Геометрические вероятности.
- Аксиоматическое построение теории вероятностей.
- Вероятностное пространство
- Лекция 4. Основные теоремы теории вероятностей. Формула полной вероятности и формула Байеса Полная группа событий.
- Условная вероятность.
- Формула умножения вероятностей.
- Формула сложения вероятностей.
- Независимость событий.
- Формула полной вероятности.
- Формула Байеса
- Основные понятия комбинаторики.
- Правила суммы и произведения.
- Лекция 5. Схема независимых испытаний Бернулли
- Случай непостоянной вероятности появления события в опытах
- Наивероятнейшее число наступления событий в схеме Бернулли.
- Предельные теоремы для схемы Бернулли.
- Теорема Пуассона.
- Понятие потока событий.
- Локальная теорема Муавра –Лапласа.
- Интегральная (глобальная) теорема Муавра – Лапласа.
- Лекция 6. Виды случайных величин и расчет вероятностей событий с использованием функций и плотностей распределения
- Закон распределения дискретной случайной величины.
- Функция распределения случайной величины и ее свойства.
- Свойства функции распределения
- Плотность распределения вероятностей.
- Лекция 7. Основные параметры распределений одномерных случайных величин.
- Математическое ожидание случайной величины
- Свойства математического ожидания:
- Дисперсия случайной величины и ее свойства.
- Среднее квадратическое отклонение.
- Лекция 8. Основные законы распределений случайных величин
- Биномиальное распределение, его математическое ожидание и дисперсия.
- Распределение Пуассона.
- Геометрическое распределение
- Гипергеометрическое распределение (урновая схема)
- Равномерное распределение.
- Показательное распределение.
- Лекция 9. Нормальное распределение и его свойства
- Свойства функции Гаусса.
- Вероятность попадания нормальной случайной величины в заданный интервал.
- Функция Лапласа и ее свойства.
- О тклонение нормальной случайной величины от ее математического ожидания. Правило «трех сигм».
- Лекция 10. Многомерные случайные величины
- Закон распределения вероятностей двумерной случайной величины
- Совместная функция распределения двух случайных величин
- Свойства совместной функции распределения двух случайных величин
- Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- Свойства двумерной плотности вероятности
- Независимые случайные величины
- Для независимых случайных величин справедливы соотношения
- Числовые характеристики системы двух случайных величин
- Корреляционный момент
- Коэффициент корреляции
- Свойства коэффициента корреляции
- Лекция 11. Предельные теоремы теории вероятностей.
- Неравенство Чебышева
- Теорема Чебышева.
- Центральная предельная теорема.
- Лекция 12. Выборочный метод анализа свойств генеральной совокупности.
- Выборочный метод и его основные понятия. Случайная выборка и ее объем
- Способы отбора
- Вариационный ряд для дискретных и непрерывных случайных величин.
- Полигон и гистограмма
- Лекция 13. Понятие о статистических оценках случайных величин Эмпирическая функция распределения
- Важнейшие свойства статистических оценок
- Надежность и доверительный интервал.
- Лекция 14. Доверительные интервалы для математического ожидания и дисперсии Доверительный интервал для математического ожидания нормального распределения при известной дисперсии.
- Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- . Доверительный интервал для оценки среднего квадратического отклонения нормального распределения
- Лекция 15. Проверка статистических гипотез.
- Статистический критерий
- Критическая область. Область принятия гипотезы. Критические точки.
- Критерий согласия Пирсона о виде распределения.
- Лекция 16. (уир) Понятие о регрессионном анализе
- Понятие о регрессионном анализе
- Выборочные уравнения регрессии.
- Линейная регрессия
- Множественная линейная регрессия
- Нелинейная регрессия
- Логарифмическая модель.
- Обратная модель.
- Степенная модель.
- Показательная модель.
- Лекция 17 (уир). Понятие о корреляционном анализе.
- А. Парная корреляция
- Б. Множественная корреляция
- Лекция 18 (уир). Цепи Маркова с дискретным временем
- Однородные цепи Маркова
- Переходные вероятности. Матрица перехода.
- Равенство Маркова
- Лекция 19 (уир). Цепи Маркова с непрерывным временем.
- Уравнения Колмогорова
- Финальные вероятности состояний системы
- Лекция 20 (уир). Системы массового обслуживания.
- Расчет характеристик систем массового обслуживания Одноканальные модели а. Одноканальная модель с отказами
- Б. Одноканальная модель с ожиданием
- Многоканальные модели